L Vichae

Bradiord D.

mmm—— CON'TRACT |
—OCTOBER 10

{(NASA-CR-%47,) LARGL At P T .- i
GYNARMICS (LATDYN) USEZR'S €a~UAL -i1n2]l soport
(Comtek) 129 p CSCL 20K

unclas
H1i/39 0040344

NASA Contractor Report 4401

Large Angle Transient
Dynamics (LATDYN)
User’s Manual

A. Louis Abrahamson, Che-Wei Chang,
Michael G. Powell, and Shih-Chin Wu
COMTEK

Grafton, Virginia

Bradford D. Bingel and

Paula M. Theophilos
Computer Sciences Corporation
Hampton, Virginia

Prepared for
Langley Research Center
under Contract NAS1-18478

NASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1991

Acknowledgements

LATDYN is the work of many people. Without the creativity, persistance, and cooperation
of each one of these individuals over a period of several years, this system of computer
codes would not exist. The purpose of this preface is to list the major contributions of the
development team members.

The research work of which LATDYN is a byproduct, was sponsored by NASA Langley
Research Center and was initiated and monitored by Dr. Jerrold M. Housner. Dr. Housner
was also responsible for initial development of the formulation on which LATDYN is
based.

Primary responsibility for design, integration, and testing of the LATDYN system rested
with COMTEK. Also, COMTEK was responsible for overseeing the project, for carrying
out the development of the computational core of LATDYN, for developing the command
language, and for writing the User's and Demonstration Problem Manuals.

Vital roles in LATDYN's development were played by four COMTEK employees, Dr.
Che-Wei Chang, Dr. Shih-Chin Wu, Mr. Michael G. Powell and Dr. A. Louis
Abrahamson. Dr. Chang and Dr. Wu jointly verified Dr. Housner's formulation making
some modifications, and worked closely together to bring LATDYN to reality. In this ac-
tivity, Dr. Chang was primarily responsible for designing and developing the computa-
tional core of LATDYN. Dr. Wu was primarily responsible for evaluation and verification
of results, and wrote the Demonstration Problem Manual. Mr. Powell assisted with the de-
sign of user interfaces, coordinated communication between the different code development
teams and implemented the interface between the computational core of LATDYN and Pre-
and Postprocessors. Dr. Abrahamson managed the project, developed much of the com-
mand language and postprocessor functional user interface, and is the principal author of
this manual.

The Preprocessor was developed by Computer Sciences Corporation (CSC) under the di-
rection of Mr. Bradford D. Bingel, who was assisted in testing by Ms. Paula M.
Theophilos. Mr. Bingel also played an advisory role in the syntactical design of the
LATDYN command language, and wrote the Preprocessor guide.

The Postprocessor was developed and tested singlehandedly by Ms. Maria V. Mitchum of
NASA Langley Research Center, using command decoding routines provided by Mr.
Bingel. Ms. Mitchum also wrote the Postprocessor guide.

~ 141 PRECEDING PAGE BLANK NOT FILMED
EJ\GL{“ L _INIENTIONALLY BLANG

Table of Contents

1- INTRODUCTION IIIIIIII SEENOESENERSRIERASNESASNUEEENES Il.llIl.'IIIII.I"..IIII.III.I1
BACKGROUNDt e rtee s et eanenenenrasnssneneneneens 1
CAPABILITIES ...ttt ittt e e s ereseessensnessnensn e, 2
ST AT S i et e e et a e, 4
THE FUTURE L.ttt e e e e eanee e ean e, 5
HOW TO USE THIS MANUAL.....ooiitiitiieieeeeerieeeeseseeessssinessessnnnss 6

2' TUTORIALII lllll SIS AN NN N PES NN ESANRS S ANNSUUENOERENANRBEEEDEE IIIIIIlIll.l.lIIIl-llllllll7
SIMPLE EXAMPLE... ..ottt eees s teeeenesaessessnsressnesnesneenens 7

Setting up the LATDYN Input Data........covvvivinininieeneeneneninenanenen. 8
Running LATDYN and the PoStProcessor..........ovuviinieineeeensenenns 11
SIMPLE EXAMPLE VARATION. ...ttt iteeee e eeseeeen e 13

3. TERMINOLOGY lllllllllll BECEEGOSNAUNENENNEEERARRARNS SasysvSsSEESEBRRESS I.llll‘ll.l1 5
18) 213 11 1 1 (6)\ S 15
Summary of Special Characters and Their Meanings.............c.cccevvevnvnnnnnnn. 20

4. CONCEPTS, SYNTAX, AND CONVENTIONS......cccceeeeeenn. 21
L6063 21 4 1N TR 21

Element-to-Gridpoint Connections in 3-D LATDYNcocevvvnvnnnn. 21
CoOrdinate SYSIEMSuuiuireiiriirrrierriniiiirertineieenererneenenannens 22
User Defined Conditions, Variables, Vectors, and Operations............. 22
S Y N T A X e et e e et e s e e 23
General FOMmMat.......oviiiiiininiiiii et e e, 23
Continuation LiNeSo.iuiuvriiiiieieiee e e e e 25
COMUMIENLS .. . ettt ettt e et et re et eeresneee e, 25
Ditto COmMMANAS.....iiiiiiiiiiiiiniieieiee e terersreeeesennsensseesrens 26
CON YV ENTION S . e e e 26
Order Of DefinitioNS. .. .vuvuisininiiiieieeieernieeeeenesnerssrenenernennennns 26
Conditional Commands.........cceeeeeenreereererenesereeeeeeseesessss, 27
Multiple Versions of Singular Commandsccoevvvnivnenrnnnnnnnns 28
Options in Command Parameters..........cccovvvvirveeereresssieenesesesnns 28
Gridpoint (and Jointpoint) NoOtation.........ceeevveevverreereereserneennen. 29
Reference Point NOHOM.uveiiiitiitie e eeeteieeneenensoneenennennonn, 30
Beam Member and Element Notationcovvviveivieriinieninininnnn, 30
Notation for Q-Variablescvviiiiiiiinieiiiieee e, 30
Notation for Table Variablesovuueiriieeiiieiee e, 31
VECIOT NOtAION. .. c.iiiiiiiieiiiiiirttieeeeen e eereeanen e reen e, 31
Functions and Operators.......cccccveeiiivviiiiiiiiieeieeeeneneenasieneennnn, 31
String Replacementsocuviiiiiiniiniiiiiiii e ee e e e 32
v

page_ |V INTENTIONALLY BLANS JREGEDING PAGE DLANK NOT FILMED

Table of Contents

5 PREPROCESSOR COMMANDSIIIIII'I-'.II-I.'.I.II'.IIl..l.l.ll.' IIIIII 33
Reading a User's Input File....covvviniiininiiiiiiiininn 33
Terminating Preprocessor Operation.........ovvvieiiieieiiiiienionneninnnee.. 33
Directing Preprocessor Echo MesSsages....cccovvirvviiveiiiiiiiiniinnenns 33
Directing Preprocessor Fatal Error Messages.............ococviiiininnnin. 34
Directing Preprocessor Warning Error Messagesovvvvevenneanane. 34

6. TOOLS FOR MODEL SETUP EASESENSEIERUSEUENSAOOOONSEEIGFEDINEEEEESITREEAS 37

COORDINATE AXES AND EULER ANGLES........cocoiniiiiiiiiiiinnn 37
Creating a New Coordinate SyStem.......ccooiinniiiiiiiniiiininn. 37
The Default Euler Angle System in LATDYN 39
Creating a User Defined Euler Angle System...........c.coovniiiinie. 40
REFERENCE POINTS ..iiitiiiiiiiiitiiieninnirreiineiniisereiiasiriesesssssenses 40
Define a Reference Pointoovvviiiiiiiiiiiiiiiiiiiiiineieennes 41
REFERENCE VECTORS ..ottt esnis s enssernaes 41
Define a Reference VECIOr.ovvvvviiiviiiiiiiiiiiiiiiiiiiiiiirenaennes, 42
USE OF COMPONENTS....cciiiiiiiiiiiiitiiiinenii e s erissniensean 43
PARAMETER SUBSTITUTION AND SETTING DEFAULTS.................. 43
Parameter SUDSHIUONvvuiiviiiniiiiiiitiiiiiiriesaieriesenesannaans 44
Set Default Component, Axes, Gridpoint, Jointpoint, Member or
Element ..ooviiiiiiiiiiiiiiiiieriiiiiiiiiiiiiiiiiiecsiisrsensesssianins 44
Clear Default Component, Axes, Gridpoint, Jointpoint, Member or
11 07 1 P 47
Show Default Component, Axes, Gridpoint, Jointpoint, Member or
130 1 1 N 47
7. DEFINING A STRUCTURAL MODEL.......c.c.ccsrrvirvniennnncarennn. 49
PROPERTIESitiivuieiitiiiiiniieeienerenerisassontsintiarseiessisrarimisenansesnens 49
Define a Material Property....cciviinniiiiniii. 49
Define the Properties of a Beam Cross-Section........coveveveiniivecnnens 49
Define The Properties of a Lumped Massocoeeiiiiiiiniiinnes 50
GRIDPOINT S ..t tttititiirerenereieitstrerosittietetsarseisssessassaraneiserssnsnannens 51
Define a Single Grid Pointooviviiiniiiiiiiiiiiiiiiiiini 51
Define a String of Equally Spaced Gridpoints Between Two
Coordinate Locations......ccociviiiiiiiiinminiiniinineen.. 52
Fill in a String of Equally Spaced Gridpoints Between Two Points
Which Have Already Been Definedccoviviiiiiiiiniiiinnnn, 53
Extend a String of Equally Spaced Grid Points Out from a Point
Which Has Already Been Defined.......coovvvviveviiininnn, 54
JOINT POINTS ...ttt eieiictitiiesit ittt cereratssnsaaearasnaesanannes 55
Defining a Hingepoint at a Grid Pointcccovivviiiiniiiinnnnn 55
Defining a Universal Jointpoint at a Grid Point.......ccccovveinenrennnee. 57
Defining a Ball Jointpoint at a Grid Pointc.ooeiiiniiinn, 57
BEAM MEMBERScviiiiiiiiiiiiiimismmersnrsansessetitetssesenernssesrnsienes 58
Define a Flexible Beam Mernber Consxstm g of one Beam Element or
a String of Beam Elementsocovvvviniiinniiinnininininnienn. 58
Define a Rigid Beam Member....ccoiiiiiiiiiiiiineeiiiiniiiiinienecenen. 59

vi

Table of Contents

RIGID BODIES ..., cciitiitiriiitierariinserinnesinireertecieriesserneresrassnsensnnens 61
Define a Rigid Bodyccvovviiiiiiiiiiiiiiiiiiiiiiiinin e 62
Define a Recursion Path for a Jointed Tree of Rigid Bodies and/or
Rigid Beam Membersccvcviiniiiiiiniiniiiiieniiieinnneenn, 63
LUMPED MASSES ...t s s e nen e ea s e s ans 63
Add a Mass to a Grid Point or Jointpoint........ccccecvrnvvvrineicinnanen 63
ROTATIONAL ELEMENTSctiiiiiiiiiiiinininririiireeirrsrirenenectraenenns 64
Define a Rotational SPringcooviiiiviiiiiiiiiiiiiiiiiicnecienenes 65
Define a Rotational Damper..........coovviiiiiiiiiiiiiiiiiiiiiicineaeen 66
Define a Rotational Non-Linear Joint.........c.coivviiiiiiiiiiiniiiinninnnns 66
LINEAL ELEMENTS ...t itiiiiiiiiiiiiiiiitieine e e rceenennesesnaranes 67
Define an Lineal Spring Acting in a Line Between Two Grid Points 67
Define an Extensional (Lineal) Damper Acting in a Line Between
Two GridPoints....cccciiueiiiiiiiirinicci i e e 68
8. CoNsTRAlNTS.IIIIIII'IIIIIIIIII-.IIII'IIIIlllll'lll'llll.III-II'.I-IUIII...l-.l...l69
JOINTS IMPLEMENTED BY CONSTRAINTScccoiiiiiiiiiiiinienecnnenns 70
Define a Hinge (Revolute) Joint via Constraints.........ccoeeeeerveerinnens 70
Define a Universal Joint via Constraints........ccccceeeviveecvinnneecrene 71
Define a Balljoint via Constraints........c.ccooeevciivniiererinniennennenennne. 72
Define a Cylindrical Joint Linking Two Gridpoints via Constraints 73
Define a Translational Joint Linking Two Gridpoints via
CONSITAINLS +evuuieiiiiiiriiiiiiertnieetieeeirienenrastssenensnsesnsasnsnns 74
MISCELLANEOUS SPECIAL CONSTRAINTSccovivviiiiiiiieieneneens 75
FixaGrd Pointccoovviiniiiiii 75
Clamp Two Grid Points Together Rigidlyccoviviiiiiininnnninnns 76
Define a Constant Distance Link Between Two Gridpoints................ 76
GENERALIZED CONSTRAINTS ...ttt 77
Define a Single Degree of Freedom Constraintccvvviinnvnennn, 77
Define a Multi-Degree of Freedom Constraint.............cccovvevivennen.s 78
9' DATA TABLES llIIIIII'II'IIIIIIIIIII.I'I.III'IIIIIIIll-.III.IIIl'.ll.'l..lll.llllll--81
TABLE INTERPOLATIONciiiiiiiniiinininiieiiiiniinneeiserennsesnessanennns 81
Define a Table (which is a Function of a Single Independent
Variable)coooviiiiiiiiiiiiiii e 83
Define a Data Table (which is a Function of Two Independent Vari-
111) 1 R TS 85
Interpolate and Differentiate a Data Table......cocecenvinniieirernrenennnnns 87
TABLE VECTORS ..ottt ne e ra s eenenenees 88
Define a Vector Table (which is a function of a Single Independent
Variable)ooviiiiiiiiii 88
Interpolate and Differentiate a Vector Table.........c.cocviiiivnininninennen. 89
10. APPLIED LOADS AND CONTROLS IIII'II'.'Il.ll.llllll.'-'ll'll'll9 1
APPLIED FORCES AND TORQUESccccviiitiiiiiiiiiineninrnrannnirnenenns 91
Define a Force and Apply it to a Grid Point or Set of Grid Points 91
Define a Torque and Apply it to a Grid Point or Set of Grid Points....... 92
ACTUATORS ...ttt e et es e b sr e sreensenes 93
Define a Lineal ACIAIOr....c.iuviviiiiiiiiiiiiiiiiiii e 93

Table of Contents

Define a Rotational ACIUALOr .vvveivriviieiiirieirsrntrerniassiiiessiessinees 94
Gravity Force Fieldooveee. et ereerer e rare et s 95
. INITIALIZATION OF DYNAMIC VARIABLES...................97
INTTIAL VELOCITIES ...ooiiiiiiniiiitiiimeiiiiiisisiiseinsianassiserssnennenconenees 97
To Give a Single Gridpoint an Initial VeloCity.ooveviiiiviiiiiiiiiiinnannn. 97
To Give a Hingepoint an Initial Rotational Velocity about its Hinge
Axis Relative to the Gridpoint.......cccoviivviiiiiiniinnniiinii. 98
12. SETTING UP A TRANSIENT ANALYSIS.........ieeeiieneeee. 99
3 0 20 99
Defining a Title for a Data Case......coviniernineiiniinniinn. 99
Writing Notes on the Data Caseovvvviiiiiinceneniiiieiiii. 100
ANALYSIS CONTROL COMMANDS......cooiiiiiiiiiiniiirieanineaneeneeens 100
Integrator Type Selection........ocvivviiiienininininiieniieciniinine . 100
Integration TIMe StEPovvvviiiniiieiiiiii e 101
Solution Time Span Specificationcoviviviiiiiiiin. 102
Mass Matrix Update Interval.........coooiviiiiiiiiiiiiiiiiiiin.. 102
Inclusion of Gyroscopic Terms in the Equauons of Motion 103
To Control the Apphcauon of Baumgarte's Constraint Stabilization
EQUation ...c.veveiiiiiiiiiiiiiniernenre s 103
SPECIAL FACILITIES TO BE USED DURING THE ANALYSIS 104
Creating a Moving Reference - Point, Vector, or Coordinate Axes
3] = 1 T PP TP 104
To Spemfy the Calculation of Instantaneous Linearized Frequencies
ANA MOAES. ..ottt e 105
OUTPUT CONTROL COMMANDS.....c..coivimiiiiiiiiinniniirr s 106
To Specify Periodic Printing of Results from the Transient Dynamic
ANALYSIS..oiviiiiiiiiiiiiii i 106
To Specify Periodic Output of Results from the Transient Dynamic
Analysis to a Postprocessor Plot Fileoocoiiiiiininnn, 108
13. A SYMBOLIC LANGUAGE FOR TRANSIENT
ANALYSIS SENEENS SN ANARE OO ACEONE NSNS RN NSNS RNESCEOTICEURANNERNEaVENONOURPEEIEETNETE 1 0 9
SYMBOLIC PROGRAMMING CONCEPTScciiiiiiiiiiiiiiinirneeineneens 109
Creating User SUDIOULNESovvvviviiiiiieiiiiiiiiiiinne e einaaes 110
Defining a Condition..........ccccooeiiieinnnnn, R 113
Creating Q-Vaniables...........coveuviiiiiiiiiiiniiiii s 113
Using Operators in LATDYN...oooinvininienn 113
LIST OF CONSTANTS FOR USE IN Q-VARIABLES AND CONDI-
110 (01 1 g P 114
LIST OF FUNCTIONS FOR USE IN Q-VARIABLES AND CONDI-
3 00\ 17 e 115
LIST OF OPERATORS FOR MAKING Q-VECTORS........ccccevviiniiiinnnnne 118
LIST OF OPERATORS FOR VECTOR ALGEBRA.........cccvviiiiiiiinnnnnne, 120
ALPABETICAL LISTING OF COMMANDS......ccccruvmmmmmmrarraneens 123

viii

1. INTRODUCTION

LATDYN is a computer code for modeling the Large Angle Transient DYNamics of
structures. It also includes special facilities for modeling control systems and for pro-
gramming changes to the model which may take place during an analysis sequence.

The concept for LATDYN had its origins in research work on computational structural dy-
namics and control-structure interaction sponsored by NASA Langley Research Center
since the mid-1980's. This work had as its goal the achievement of a better understanding
of the technology needed for designing the structure and control systems of future space-
craft. From this perspective LATDYN should not be viewed as an end product in itself but
rather as a byproduct of research whose goal was technology development.

As aresult LATDYN's scope is limited. For example, it does not have the wide library of
finite elements that would be found in a commercial code, and 3-D Graphics are not avail-
able. Nevertheless, LATDYN does have a measure of the "user friendliness" that has come
to be associated with commercial products. There are two reasons for user-friendliness in
LATDYN and these are as follows. First, one objective of LATDYN development was to
demonstrate ways in which a user interface might be structured to incorporate controls
modeling in a transient multi-body dynamics code. A second objective was to make the tool
usable by a spectrum of other researchers so that the new techniques incorporated in
LATDYN could be widely evaluated.

Other specific objectives in LATDYN development were to,

Q develop and evaluate different formulations in multi-body dynamics,

0 find ways to bring three different disciplines (structural analysis, multi-body
dynamics, control system analysis) together in one computational tool,

Q produce a product with some lasting value to research in the field.

The purpose of this manual is to document the status of LATDYN at the end of
COMTEK's contract with NASA, and to describe how the code may be used.

BACKGROUND

LATDYN has its roots in three disciplines that have historically been separate:

U Finite Element Structural Analysis,
Q Multi-Body Dynamics, and
0 Control System Analysis.

At the beginning of the research work which spawned LATDYN, this separation of critical
disciplines was percieved as a barrier to the efficient design of structures and control sys-
tems for spacecraft. For example, a structure might be designed to be stiffer than otherwise
required in order that its flexible modes should not lie within the frequency range of con-
trol system response.

2 Introduction

The evolution of the three disciplines was briefly as follows. Since the late 1960's almost
all structural analysis of aerospace vehicles has been performed using finite element tools,
but even up to the mid-1980's finite element analysis tools did not have the capability for
modeling the large dynamic motions which spacecraft commonly experienced. Over ap-
proximately the same period that the finite element method assumed its dominance in
structural analysis, research in the mechanics of interconnected rigid bodies was stimulated
by needs in the auto industry and elsewhere, and grew to produce a new discipline encom-
passing large motions of rigid bodies connected by joints that came to be called "multi-body
dynamics". Later, flexible body capability was added by a normal mode approximation.
Lagging somewhat behind the other two disciplines but rapidly coming to fruition, a third
development was taking place. Computer software embodying numerical solvers and using
a symbolic user interface were being combined with modem control formulations to yield a
range of new tools which greatly simplified the simulation and design of control systems.

From separate beginnings, which were partly the result of historical accident, came organi-
zational barriers which tended to reinforce boundaries between the disciplines, and to fur-
ther restrict technical communication between practitioners of these disciplines. This situa-
tion provided the impetus and stimulated the research of which LATDYN is a byproduct.

The precurser to the 3-D version of LATDYN, which is described herein, was 2-D
LATDYN 1. This code was developed first in order to gain experience with the wealth of
new technology being generated. Here, the name LATDYN refers to the 3-D version only,
which although it shares much of the same philosophy of the original 2-D version, is an
entirely new code with many new features. The Command Language described in this doc-
ument is derived from the 2-D Command Language but has been enhanced and changed to
reflect the needs of a 3-D modelling system

CAPABILITIES

LATDYN extends and brings together some of the aspects of the three disciplines men-
tioned above, combining significant portions of their distinct capabilities into a single anal-
ysis tool. However, this claim should not be misconstrued.

LATDYN is a research code. It does not have the facilities and range of features commonly
associated with commercial codes. It was developed to illustrate how the interdisciplinary
barriers discussed above may be overcome. It is informative however, to contrast
LATDYN's capabilities and formulation with those of existing commercial codes because
these codes embody the disciplinary divisions discussed above.

The formulation for flexible bodies in LATDYN is described in the references 2345, and
is grounded in conventional finite element methodology . That is, the structure to be mod-

1 Housner, J.M., McGowan, P.E., Abrahamson, A.L., and Powell, M.G., "The LATDYN User's Manual",
NASA Technical Memorandum 87635, January 1986.

2 Housner, J.M., Wu, S-H, Chang, C-W, and Abrahamson, A.L., "A Finite Element Method for Time Varying
Geometry in Multi-body Structures”, Paper presented at the 29th Structures, Structural Dynamics, and
Materials Conference, Williamsburg, Virginia, April 1988.

Introduction 3

eled is discretized into a number of finite elements with specific known properties. Tn finite
element programs such as NASTRAN, EAL, ANSYS, and MARC, there are large libraries
of element types to enable many different types of structures to be modeled. At present, be-
cause it is a new research code, the only continuous flexible elements that 3-D LATDYN
contains are beam elements.

The finite element formulation for flexible bodies in LATDYN extends the conventional
finite element formulation by using a convected coordinate system for constructing the
equations of motion. Conventional finite element formulations do not incorporate the full
non-linear inertial effects associated with large displacements and rotations. LATDYN's
formulation allows for large displacements and rotations of finite elements subject to the
restriction that deformations within each element are small. Large structural deformations
may still be modeled by using a denser finite element discretization so that the small de-
formation approximation holds within each element (see references 2-5).

For rigid bodies and joints LATDYN borrows extensively from methodology used in
multi-body dynamics. That is, rigid bodies may be defined and connected together through
joints (hinges, ball, universal, sliders, etc.). LATDYN also includes both types of conven-
tional multi-body joint formulations. Joints may be modeled either by constraints (as in
ADAMS, DADS, and DISCOS) or by adding joint degrees of freedom (as in TREETOPS).

In mult-body dynamics codes such as ADAMS and DADS it is also possible to combine
rigid bodies with flexible ones, flexible bodies being modeled through a selected set of
normal modes. Selection of modes is a problematic procedure (even in apparently simple
cases as shown in references 2 and 4), due to the difficulty of choosing appropriate bound-
ary conditions for modal determination and in selecting an appropriate subset of modes for
the analysis. The selection process is compounded beyond that associated with modal syn-
thesis techniques for small vibration analysis. Furthermore, the use of modes provides no
determinable convergent path by which solutions can be checked. That is, adding more
modes does not mean that the solution will converge to the correct answer. On the other
hand, the finite element approach implemented in LATDYN provides a convergent path for
checking solutions simply by increasing mesh density.

Control systems are often modeled using a symbolic language to perform mathematical op-
erations such as matrix manipulations and numerical integration in programs such as
MATRIX-x and EASYS, typically using normal modes from a finite element code such as
NASTRAN to represent the structure. In some situations of practical current interest, this
procedure lacks efficiency and may cause errors. For example, where the structure is
changing its configuration throughout the controlled motion, such as in the case of a mov-
ing robot arm, or during the deployment sequence of a spacecraft component , the normal
modes also vary throughout the motion. Thus, the separation of structural analysis and
control analysis in this way becomes cumbersome.

3 Housner, J.M., Wu, S-H, and Chang, C-W, "Controlled Multi-body dynamic Simulation for Large Space
Structures™, Paper presented at NASA/DOD Controls-Structure Interaction Conferance, NASA CP3041,
January 1989.

4 Wu, S-H, Chang, C-W, and Housner, J.M., "Dynamic Analysis of Flexible Mechanical Systems Using
LATDYN", Paper presented at 3rd Annual Conference on Aerospace Computational Control, Oxnard,
California, August 1989.

5 Chang, C-W, Wu, S-H, and Housner, J.M., "A Finite Element Approach for the Dynamic Analysis of Joint
Dominated Structures”, NASA Technical Memorandum to be published.

4 Introduction

LATDYN solves this problem by providing symbolic capabilities for modeling control
systems which are integrated with the structural dynamic analysis itself. Its command lan-
guage contains syntactcal structures which perform symbolic operations and which are
also interfaced directly with the finite element structural model, bypassing the modal ap-
proximation. Thus, when the dynamic equations representing the structural model are inte-
grated, the equations representing the control system are integrated along with them as a
coupled svstem. This procedure also has had the side benefit of enabling a dramatic simpli-
fication of the user interface for modeling control systems. Rather than dealing with an ab-
stract set of modal parameters, the user is now able to deal directly with the finite element
model of the structure in programming a control system. LATDYN's interface includes
symbolic operators representing familiar mathematical and laboratory constructs that are the
basis of a complex control system. The way in which these programming features have
been implemented is relatively open ended because they are written by the user in a form of
psuedo-FORTRAN which is converted into standard FORTRAN 77 by the LATDYN

Preprocessor.

STATUS

LATDYN 1s the first code to use flexible finite elements which can rotate rapidly through
large angles while retaining accurate modeling of inertial effects, and also to allow these
finite elements to be connected by joints and rigid bodies. The algorithms and code in
LATDYN's computational core which embodies this formulation, have been exhaustively
checked against other multibody formulations, and we have high confidence in their
correctness.

At a higher level, the code has been less well checked. LATDYN has more than seventy
commands, each command has several parameters, there are multiple ways to specify many
parameters, and there are thousands of combinations of ways in which data may be
specified. It has not been possible for us to check them all. We make no apology for this
because LATDYN has been developed in a research environment and is not a commercial
product. As the code matures through use, we expect confidence in the whole to grow.
However, this is not within COMTEK's control and will depend on NASA's maintenance
policies for the code.

A further comment on the status of the code is appropriate. One prime objective of the
research was to show how to accomplish the task of structuring a multi-body finite
element code with the intrinsic structures necessary for detailed modeling of control
systems. Our work in this regard extended by a significant margin that which was ever
actually planned for implementation in the computer code. Nevertheless, many of these
advanced ideas are embodied in the command structures described in this manual. Although
our work is finished, we have specifically included references to advanced items which
were not planned for full implementation. The reasons for leaving these structues in place
in the manual are twofold, to accurately represent the work that was done, and to assist any
future development.

For example, while our formulation included the capability for hinge (revolute) joints by
transformations (adding degrees of freedom) and was never planned to be extended to
include universal or ball joints by this method, such a procedure is clearly possible and has

* The code is available through COSMIC and can be obtained by writing to COSMIC,
Office of Computing Administration and Planning, Computer Services Annex, The
University of Georgia, Athens, GA, 30602.

Introduction 5

been included in the command structure and has been built into the Preprocessor. (Note that
a LATDYN user can still model universal joints and ball joints by constraints).

Also for example, while rigid body chains linked together by joints and connected to
flexible finite elements are clearly possible by recursive implementation of the joint and
rigid body transformations included in our formulation, such a recursive structure was
never planned for implementation in LATDYN. What might not be clear however, is how
such a recursive formulation might be included in a command structure. This problem was
solved and is shown in the RMEMBER and RBODY commands as "options in analysis
algorithm". These options also include reference to an advanced "auto” capability where the
program could itself choose the most efficient algorithm and recursion path to be used.

THE FUTURE

The U.S. Space Program is poised on the brink of exciting new developments. In his space
policy speech in mid-1989 President George Bush reaffirmed the Nation's commitment to
achieve a permanent manned operational space station in the 1990's. He also set future
goals for lunar and planetary exploration as well as missions to planet earth. NASA is
currently moving forward to establish programs to meet these goals.

Even at this early planning stage, it is apparent that fulfilment of these broad goals requires
the construction, operation and maintainance of large spacecraft. These large spacecraft will
include will include the low earth orbit infrastructure necessary to support planetary
exploration missions, as well as planetary exploration vehicles themselves and
geostationary facilities.

Construction, operations, and maintaince of large spacecraft all involve large angular
motions. These motions may consist of pointing the entire spacecraft or articulation of
individual components. Analysis of such motions for large structures, is beyond the routine
capability of conventional analytical tools without simplifying assumptions. In some
instances the motion may be sufficiently slow and the spacecraft (or component)
sufficiently rigid to simplify analyses of dynamics and controls by making psuedo-static
and/or rigid body assumptions.

In the general case however, each of the three phases of spacecraft performance require
analyses that can account simultaneously for flexibility and the inertial effects of the angular
motion. The ability to perform such analyses may affect not only the design of the
structures themselves and the spacecraft control systems, but can also have a dramatic
impact on the speed at which operations could be carried out in space. For example, the
remote manipulator arm on the Space Shuttle commonly requires a settling time in excess of
ten minutes after each manipulation to allow the vibration to subside.

There is a clear need for new tools to analyse flexible large-angle dynamics and controls,
for growth versions of Space Station "Freedom", for the Human Exploration Initiative, and
for Mission to Planet Earth. The research work which spawned LATDYN is one step
towards the development of such tools, but more needs to be done.

6 Introduction

Large angle transient dynamics is inherently computationally intensive. A tool that made the
most of existing technology would include a recursive version of the present LATDYN,
add a more diverse range of finite elements (such as a beam with bending and torsion but
no extension, a plate, and a thin shell), the capability of representing particular flexible
components by component modes, bandwidth minimizing routines, advanced integrators,
and vectorization / parallelization for supercomputers. In addition, a facility that allowed a
user to easily change the level of refinement (more or less elements, more or less modes)
and also the way in which components of a structure were modeled (finite elements or
component modes) would be very useful.

In addition, methods for designing control systems for flexible articulating structures are
not well developed. This appears to be an area where substantial research is needed.

HOW TO USE THIS MANUAL

In this Manual, LATDYN commands are laid out in a sequence which with a few excep-
tions, follows that which would be used in creating a data case for a transient analysis. That
is, tools for model setup are described first, next commands for defining the structural
model, then constraints, data tables, applied loads, and initialization of dynamic variables.
Instructions for setting up, for controlling, and for programming a transient analysis come
last.

For a new user of 3-D LATDYN, there are some important concepts which need to be un-
derstood and the ordering of the manual is more useful for reference than for tutorial pur-
poses. For this reason the next section contains a tutorial to guide a new user through some
simple examples. Perhaps the best way to gain quick familiarity with LATDYN is to read
Section 2, quickly skim the rest of this Users Manual, and then work carefully through the
case studies presented in the Demonstration Problem Manual, referring to the Users Manual
for detailed explanations of the various commands used there.

For experienced users of other finite element codes there are some particular differences
that need to be understood before beginning to set up a model. These topics are also cov-
ered in the next section and involve:
o The different types of points to which structural entities may be connected and the
implicit relationships that the point naming conventions imply,
o Coordinate systems which may be created and used for setup of the model and eval-
uation of the analysis,
o User defined Conditions, Variables, Vectors, and Operations.

2. TUTORIAL

The LATDYN System has three parts as shown in Figure 2.1. Each part is a separate com-
puter program which communicates with the others by information stored in files.

Preprocessor

LATDYN

Postprocessor

Figure 2.1 The LATDYN System

To show how use LATDYN and to illustrate its structure, a simple example is reviewed
here. This example is not intended to show LATDYN's capabilities. The Demonstration
Problem Manual contains examples which better illustrate the extent of LATDYN's power.

SIMPLE EXAMPLE

"A rigid projectile with a mass of 100 Kg, is accelerated to a velocity of 10 meters per sec-
ond by applying a force of 100 Newtons.”

LATDYN execution requires four things:

Setting up the input data:
This can be done directly by typing data into the Preprocessor program, but a
much better way is to use the editor in your computer system to create a file con-
taining your input data - then you can modify this file later, without having to re-
type the whole thing.

Running the Preprocessor program:
This program reads and interprets your input data and prepares input files for
LATDYN. The Preprocessor is quick and is usually run interactively. It will catch
most syntactical and cross-referencing errors that you make.

8 Tutorial

Running the LATDYN program:
For this example, LATDYN will run quickly and can easily be run interactively.
Usually you will want to run it batch, and for large problems you may want to
use a supercomputer if available.

Running the Postprocessor program: .
This program reads LATDYN output data and plots the results in a variety of
ways. It also has facilities to allow you to manage and compare data from several
runs, and from other external sources.

Setting up the LATDYN Input Data
To set up the input data for this example you need to:

(1) define the properties of the lumped mass
(2) define a gridpoint

(3) "stick" the mass onto the gridpoint

(4) define the force

(5) specify the transient analysis

So lets's do it!

(1) The command to define the properties of a lumped mass is MASSPROP.

$ massname mass CG. Iy lz Ixy,Ixz,lyz

MASSPROP: Projectile 100 0,0,0 1,1,1 0,0,0

There are several things to notice about this command. Let's take them one at a time.
First there is the format. You'll notice the line which starts with a "$" sign, itis a
comment. Comments are ignored by the Preprocessor. Here we have used it to label
the command parameters, but you can use comments to annotate your input data any
way you wish. The rules on comments are found in Chapter 4.

Next there is the command itself. It begins with the key word MASSPROP. This
keyword tells the Preprocessor that the following data is to define lumped mass prop-
erties. The data itself is divided into parameters. A parameter is separated from other
parameters by a comma and/or spaces. The rules and conventions for commands are
also in Chapter 4.

We have chosen to give the mass the name "projectile”. The name is just for our use
and it could be any combination of numbers and letters, but two lumped mass prop-
erties cannot have the same name.

The next parameter is the mass itself, which is 100Kg. The command also requires
specification of the center of mass. Let's place it at the origin.

The next parameters are rotational mass properties, which are not given since rota-
tional motion is not anticipated. LATDYN has to have non-zero values (otherwise its

Tutorial 9

mass matrix will be non-positive definite) so let's give arbitrary values of 1 Kg x M2.
Let's also assume that the mass is a sphere so that the products of inertia are all zero.

(2) The command to define a gridpoint is described in Chapter 7. We choose to de-
fine one at coordinate location (0,0,0) in the global coordinate system.

$ gridpoint # Xy.Z Coordinate System
GRIDPT: #G1 0,0,0 GLOBAL

What is a gridpoint and why do we need one?

A very important concept in finite element methodology is that of gridpoints or nodes.
In most finite element programs for structural modeling, a gridpoint is set up as a fic-
ticious entity in space. The finite element model is then constructed by connecting fi-
nite elements between gridpoints. For this problem we don't need gridpoints for con-
necting finite elements, but we do need one to which to attach the mass.

In LATDYN gridpoints are preceeded by the "#" symbol and the letter "G". If a grid-
point is defined as part of a component, then the component ID is also present. The
rules and conventions for gridpoint names are given in Chapter 4.

y
“Thrust® Projectile}, J"GLO
100 Newtons #G1 .
“IGLO X
KAGLO
z

Figure 2.2 Coordinate System and Unit Axis Vectors for Projectile Example

(3) The command to create a mass and "stick" it onto a gridpoint is ADDMASS. It is
defined in Chapter 7. We can use it to add a mass to #G1 with the properties which
we defined in step (1).

$ gridpoint # mass prop.name coordinate system
ADDMASS: #Gl1 Projectile

The ADDMASS command also asks for the name of a coordinate system. We are
using the global coordinate system, so we can just leave it blank since that is the de-
fault coordinate system.

10

Tutorial

(4) A force is specified by the APPFORCE command. It is described in Chapter 7.
No direction for the motion is specified in this example, so let's assume a direction
along the global x-axis.

$ force name magnitude, direction duration application point

APPFORCE: Thrust MSDV(100, INGLO) TIME(0.0, 10.0) #G1

There are many OPTIONS for specifying data with this command. We chose the
MSDYV option for specifying the magnitude and direction of the force. MSDV stands
for Magnitude-Scalar-Direction-Vector. The magnitude of the force was given as 100
Newtons, and we assumed that the direction of the force was going to be along the
global x-axis.

At this point we meet another of LATDYN's special parameters - a unit axis vector.
Whenever a coordinate system is defined, its unit axis vectors (i,j,k) are also auto-
matically defined. Since the GLOBAL system does not have to be defined, its axis
vectors already exist. We can use them as (INGLO, JAGLO,KAGLO) for (i,j,k).
(Note that "GLO" is allowed as an abbreviation for "GLOBAL".)

As for the duration of the applied force, we cheated a little and calculated the amount
of time (10 seconds) that it would take for the force to accelerate "Projectile” to a ve-
locity of 10 Meters per second. In the next example we'll show how you can let
LATDYN test when the velocity of the projectile has reached the required level and
turn off the force automatically.

(5) The commands to specify the transient analysis are not complicated to imple-
ment. You will always need a TITLE,an INTEGRATOR, a TIMESTEP, and a
TIMESPAN command. These are required commands and the preprocessor will not
let you run LATDYN without them. Let's also add a PRINT and a PLOT command.
All of these commands are described in Chapter 10. We will put the four required
commands at the beginning of the input file, and the print and plot specifications at
the end.

$ Ttle

TITLE: First LATDYN Tutorial Example

$ Integrator Type

INTEG: EXPLICIT

$ step size in seconds

TIMESTEP: .05

$ starttime stop time

TIMESPAN: 0.0 12.0

$ massname mass CG. Ixly .z ixy,Ixz,lyz
MASSPROP: Lump 100 0,0,0 1,1,1 0,0,0
$ gﬁdpoint # X,Y,Z Coordinate System

GRIDPT: #Gl1 0,0,0 GLOBAL

Tutorial 11

$ gridpoint # mass prop.name

ADDMASS: #Gl1 Lump

$ force name magnitude, direction duration application point
APPFORCE: Thrust MSDV(100, INGLO) TIME(0.0, 10.0) #G1

$ print once every second

PRINT: TIME(1)

$ write plot data at every step

PLOT: STEP(1)

$

END

Well that's it! Now you are ready to run the Preprocessor.

Running LATDYN and the Postprocessor

To run LATDYN on a VAX-VMS System, you type
LATDYN filename.

where "filename" is the name of your input data file. The procedure "LATDYN" loads the
Preprocessor and starts it executing your input file. The Preprocessor generates two main
output files. One contains data to be read into the LATDYN Program, the other contains
FORTRAN subroutines generated by the Preprocessor for linking to LATDYN. These sub-
routines are called PRECALC, BGNSTEP, INLOOP, and ENDSTEP. They are called by
LATDYN at specific points in the integration loop (see Chapter 13).

The LATDYN Procedure then does a test compilation of these subroutines to make sure
that they are syntactically correct, then it links them to the LATDYN Program object code
and submits it as a batch job, since the LATDYN Program usually takes too long to run in-
teractively.

The LATDYN Program writes two main output files, a print file and a plot file. The plot
file is specially intended for use with the Postprocessor. The LATDYN Postprocessor is a
very user friendly program which allows you to plot and keep track of your data. To start it

type
POSTPROC

The plot file which is generated by the LATDYN Program will have the same name as your
input file appended with the letters ".PLT". For example, if your input file was PROJ, then
the plot file will be called PROJ.PLT. The Postprocessor command to open this file is
simply

12 Tutorial

OPEN PROIJ.PLT

You could leave the ".PLT" suffix off the filename in the OPEN command because this is
the default suffix for a LATDYN plot file. That is, the Postprocessor will assume that your
plot file will have a .PLT suffix unless you specify otherwise.

There are many functions which you can now plot as you will see in the Postprocessor
Manual. An easy way to find out what commands are available, and what each one does is

to type
HELP

The HELP command brings up a menu on the screen showing a list of all commands. You
can get more information about each one by now typing the name of that command. To see
a plot of the x-displacement of the projectile versus time, type

PLOTX D #Gl

You should now see the requested plot on the screen.

Another very useful feature which is built into the Postprocessor enables you to compare
different types of plotted output. To introduce this feature type

STORE
to store the previous plot in a temporary file called the "storfile". Then type
STORON

to automatically store all future plots that you create in this file. Now generate a plot of the
velocity of the projectile and then one of its acceleration by typing,

PLOTX V #Gl
PLOTX A #Gl

To look at the storfile contents type
INDEX

and you will see that there are three plots stored there. You can plot all these together on a
single plot by typing

PS2 123

to compare the displacement, velocity, and acceleration of the projectile versus time.

Tutorial 13

SIMPLE EXAMPLE VARATION

LATDYN has programming capabilities which could conveniently have been used in the
"Projectile” example. We can use these by modifying the APPFORCE command used be-
fore by omitting the time duration and making it a conditional command as follows:

$ force name magnitude, direction application point condition label
APPFORCE: Thruster MSDV(100, INGLO) » #G1 ?7Cl1
$

Cl: X(V,#G1) .LT. 10

then the force will be subject to condition "C1" and will remain in effect only while that
condition is TRUE. Condition "C1" is then defined such that it is true while the x-velocity
of gridpoint #G1 is less than to 10 meters per second. When the x-velocity of gridpoint
#G1 exceeds this value then the force will turn off automatically.

If you know how to program in FORTRAN then you may recnogize the ".LT." structure as
being the same as that which occurs in a FORTRAN "Logical If" to mean "LESS THAN".
This is no accident because LATDYN conditions are one of those commands which get
translated into FORTRAN by the Preprocessor.

15

3. TERMINOLOGY

There are many new ideas that have gone into designing LATDYN and it was necessary
develop a terminology to describe them. To help with understanding, this section contains a
list of LATDYN terminology in alphabetical order with a brief explanation of each term.
Some words and concepts may be familiar but the way that they are used may be slightly
different from usual. Also included is a list of special characters used in the command syn-
tax with an explanation of their usage.

DEFINITIONS

Attached Reference Entity

An attached reference entity is a reference point, a reference vector, or a coordi-
nate system that is attached to a gridpoint and moves with it during the transient
analysis.

Ballpoint

A ballpoint is an element connection point on one side of a ball joint.When a ball-
point is defined at a gridpoint then the gridpoint/ballpoint pair may be regarded as
the two sides of a ball joint. Definition of a ballpoint adds three degrees of free-
dom to the dynamic system. Beam members may be connected to either side of
the joint. Possible formats for a ballpoint are #GjBk, #CiGjBk, or
#C"name"GjBk where i,j,k are integers.

Beam Member

A flexible beam member is made up, either of a single flexible beam finite ele-
ment, or of a string of identical flexible beam finite elements. A rigid beam mem-
ber is a single rigid body with the inertial properties of a rigid beam. The format
of a beam member ID is #Mj, #CiMj, or #C"name"Mj where i an j are integers.

Condition

A condition is a user defined logical statement written in a FORTRAN-like syntax
that may be used to test for events which may occur during the transient analysis.
A condition is referenced by its condition label.

Condition Label

A condition label is the name by which a user defined logical condition is refer-
enced. When appended to certain commands it makes the action of that command
subject to the logical condition. This action will depend on whether the command
is singular or non-singular. The format of a condition label is Ci or CLi where i is
an integer between 1 and 99. When a condition label is appended to a command,
then it is preceded by a question mark "?". The question mark may be read as

” IFH .

TENTIONALLY BLANK =CED:
ence [4w PRECEDING PAGE BLANK NOT FILMED

16

Terminology

Condition Variable

A condition variable is a logical variable which is similar to a FORTRAN logical
variable which may appear in conditions. Every user defined condition has a logi-
cal condition variable associated with it. A condition variable has the form CLi,
where i is an integer between 1 and 99.

Component

A component name is simply an extra identification which can be a number or a
name (enclosed in quotes) that can be added to gridpoint and member ID’s. When
this is done, then that item is regarded as a part of the specified component.

Constraint

A constraint is an equation which removes degrees of freedom from the system.
There are many types of constraints in LATDYN. For example, the
HINGEJOINT, BALLJOINT, UNIJOINT, CYLJOINT, and TRANSJOINT
commands set up joint constraint equations. User defined constraint equations
may be created by the SDFC and MDFC commands.

Coordinate Axes

Coordinate systems are defined by the AXES command and may be attached to
gridpoints by the ATTACH command. When a new coordinate is defined, it is
given a name by the user so that it can be referenced in subsequent commands.
When a coordinate system is defined then a set of unit axis vectors are automati-
cally created and can be referenced by the user

Flexible Element

A flexible element is a finite element which is connected between gridpoints
and/or jointpoints. A flexible structure is modeled by an assemblage of finite ele-
ments representing each part of the structure.

Function

A User Function in LATDYN calculates a single value and is similar in syntax
and operation to a FORTRAN function. LATDYN has a wide variety of special
user functions to calculate parameters associated with the dynamic model, in ad-
dition to all of the standard FORTRAN functions which are automnatically avail-
able. User Functions may be used in Q-variable definitions and in Conditions.

Gridpoint

Gridpoints are the basic conceptual entities on which a structural model in
LATDYN is built. As in most finite element programs for structural modeling, a
gridpoint is created by the user as a ficticious entity in space. When it is initially
created each gridpoint has six degrees of freedom. A finite element model is con-
structed by connecting finite elements between gridpoints. In LATDYN joint-
points may also be defined at a gridpoint. Possible formats for a gridpoint are
#Gj, #CiGj, or #C"name"Gj where i and j are integers.

Hingepoint

A hingepoint is an element connection point on one side of a hinge (or revolute)
joint.When a hingepoint is defined at a gridpoint then the gridpoint/hingepoint
pair may be regarded as the two sides of a hinged joint. Definition of a hingepoint

Terminology 17

adds one degree of freedom to the dynamic system. Beam members may be con-
nected to either side of the joint. Possible formats for a hingepoint are #GjHk,
#CiGjHk, or #C"name"GjHk where i,j,k are integers.

Jointpoint
Jointpoints are the collective name for finite element connection points which are
connected to gridpoints by a joint transformation (HINGEPOINT, UNIPOINT,
BALLPOINT etc.). That is, when a jointpoint is defined by the user only those
degrees of freedom which are necessary to define the joint are added to the sys-
tem. This is different to creation of a joint by constraints (see Joint Constraint).

Joint Constraint
A joint between two gridpoints may be created by constraints. Initially each grid-
point will posess six degrees of freedom, some of which will be removed by the
joint constraints. Examples of commands to set up joint constraint equations in-
clude HINGEJOINT, BALLJOINT, UNTJOINT, CYLJOINT, and
TRANSJOINT.

LATDYN Program

The FORTRAN computer program which is the computational core of the
LATDYN System.

LATDYN

The collective name for the three FORTRAN computer programs which make up
the LATDYN System. The three programs are the LATDYN Program, the
Preprocessor, and the Postprocessor.

Member
A flexible or rigid structural beam member. A flexible beam member is made up,
either of a single flexible beam finite element, or of a string of identical flexible
beam finite elements. A rigid beam member is a single rigid body with the inertial
properties of a rigid beam. The format for members is #Mj, #CiMj, or
#C"name"Mj where i and j are integers.

Operator

An Operator in LATDYN performs multiple actions and/or calculates and assigns
multiple values. It is similar in syntax and posesses the full diversity of operations
as a FORTRAN subroutine. LATDYN has a wide variety of special user
Operators to create, calculate, and manipulate Q-vectors from parameters associ-
ated with the dynamic model.

Option
An OPTION in a LATDYN command signifies that there is more than one way to
specify the information. An OPTION consists of a keyword followed by one or
more parameters enclosed in parentheses.

Postprocessor

The FORTRAN computer program which allows a user to interactively plot and
manage a database of LATDYN transient analysis results. It is one of the three
programs in the LATDYN System.

18 Terminology

Preprocessor

The FORTRAN computer program which translates user commands into a form
which can be used by the LATDYN Program. The Preprocessor also performs er-
ror checking on user input. It is one of the three programs in the LATDYN
System.

Q-Variable
A Q-variable is the generic name given to user defined variables in LATDYN. The
name comes from the requirement that all user defined variables begin with the
letter "Q". A Q-variable is defined in one of the several types of SET commands,
and the format of its definition appears very much like a FORTRAN assignment
statement. The right hand side of the assignment may include any standard
FORTRAN arithmetic operation, standard FORTRAN functions, and also special
LATDYN User Functions. Q-variables may be used as parameters in a number of
LATDYN commands, such as applied loads and constraints. They may also ap-
pear in other Q-variable assignments. Q-variables are one of the basic tools which
enable a user to program control systems. The format for global Q-variables is Qk
where k is an integer betwen 1 an 99. The format for local Q-variables is Qname
where name is any alphanumeric string not exceeding six characters.

Q-Vector
A Q-vector is the generic name given to user defined vectors in LATDYN. The
name comes from the requirement that all user defined vectors have L.D. that be-
gin with the letter "Q". A Q-vector is defined and manipulated in one of the sev-
eral types of OP commands using standard LATDYN Operators. Q-vectors may
also be used as parameters in a number of LATDYN commands, such as applied
loads for example. Q-vectors are one of the basic tools which enable a user to
program control systems. The format for a Q-vector I.D. is Q*k where k is an
integer between 1 and 99.

Reference Point

A Reference Point is used as a reference location in space. It may be used both in
setting up a model and as a reference location for measurement during a transient
analysis. A reference point may remain stationary, or it may be attached (see
ATTACH command) to move with a gridpoint. A reference point adds no degrees
of freedom to the system, and finite elements may not be connected to it. Possible
formats for reference points are #Rj, #CiRj, or #C"name"Rj where i and j are in-
tegers.

Reference Vector

A Reference Vector is a reference quantity that has both direction and magnitude.
It may be used both in setting up a model and as a reference for measurement
during a transient analysis. A reference vector may remain stationary, or it may be
attached (see ATTACH command) to move with a gridpoint. The format for a ref-
erence vector 1.D. is RAk where k is an integer.

Rigid Body
A rigid body may consist of one or more gridpoints whose relative relationship is
fixed. A rigid body has no inherent inertia until masses are attached to one or
more of its gridpoints using the ADMASS command.

Terminology 19

Singular Command

Some commands are termed singular because only one version of the command
can be active at a time. If multiple versions of a singular command are given, then
all versions of the command except the first must be conditional (that is they must
be qualified by a condition label). The order is important, because LATDYN
chooses the last one whose condition is true to be the active command.

Timestep

A timestep is the discrete increment of time for one step in the transient analysis
for numeric integration of the differential equations of the users LATDYN model.

T-Variable

Every data table in LATDYN has a T-variable automatically associated with it.
The value of the T-variable represents the interpolated value of the dependent
variable in the table at the present timestep. A T-variable may be used in most
places that a Q-variable may be used. The format for referencing a T-variable is
Tk where k is an integer.

T-Vector
Every vector table in LATDYN has a T-vector automatically associated with it.
The magnitude and direction of the T-vector represents the interpolated values of
the dependent variables in the table at the present timestep. A T-vector may be
used in most places that a Q-vector may be used. The format for referencing a T-
vector is T~k where k is an integer.

Unipoint
A unipoint is an element connection point on one side of a universal joint. When
a unipoint is defined at a gridpoint then the gridpoint/unipoint pair may be re-
garded as the two sides of a universal joint. Definition of a unipoint adds two de-
grees of freedom to the dynamic system. Beam members may be connected to ei-
ther side of the joint. Possible formats for a unipoint are #GjUk, #CiGjUk, or
#C"name"GjUk where 1,},k are integers.

Unit Axis Vector

A unit axis vector lies along each of the three coordinate axes of every coordinate
system. These are identified by the letters (I,J,K) for the Cartesian coordinates
(x,y,z) respectively. A unit axis vector is a reference entity which may be used for
a direction reference in a similar way that reference vectors may be used When a
coordinate system is defined then a set of unit axis vectors are automatically cre-
ated and can be referenced by the user as [*axesname, JAaxesname, KAaxesname.
The global system axis vectors INGLO, JAGLO, KAGLO are predefined.

User Subroutine

A user subroutine is a receptical for the Psuedo-FORTRAN commands specified
by a user in SET, OP, and CLj commands.

20 Terminology

SUMMARY OF SPECIAL CHARACTERS AND THEIR
MEANINGS

Character Meaning

optional terminator to a command name

, data separator

(space) data separator

& continuation line (when used as the last character excluding spaces, on a line)
$ comment flag (everything following it on the line is a comment)

encloses a name
encloses a name

! indicates a user defined parameter to be replaced as specified in the DEFINE com-
mand

? preceeds a condition label at the end of a command (read IF)
() encloses a list of parameters for a command OPTION

A denotes a vector by being placed between a letter (denoting vector type) and an inte-
ger ID (for example, R*4 or TAS5 or QA6)

preceeds the ID for gridpoints (#Gi), reference points (#Ri), members (#Mi) with
"i" denoting an integer

Conventions 21

4. CONCEPTS, SYNTAX, AND CONVENTIONS

CONCEPTS

Element-to-Gridpoint Connections in 3-D LATDYN

LATDYN is designed for modeling the transient dynamics of flexible articulating structures
and mechanisms involving joints about which members rotate through large angles. For
these applications it has been convenient to extend conventional finite element modeling
concepts in two small but significant ways.

One extension involves the concept of jointpoints. The name jointpoint is used to refer to a
joint connection which may be a hinge or revolute (single hinge line), a universal (two
hinge lines), or a ball (three hinge lines). Whereas a gridpoint introduces six degrees of
freedom to the problem, a jointpoint only introduces one degree of freedom for each hinge
line. Since a jointpoint by itself may never have as many as six degrees of freedom associ-
ated with it, it must always be attached to a gridpoint.

Thus from the users point of view in LATDYN, a finite element may be attached rigidly to
a grid point, as in conventional structural finite element codes, or a finite element may be
attached to a gridpoint through a jointpoint to which it is connected.

For example, to set up a model of two beams connected together at their ends by a hinge, in
LATDYN, one member may be connected to a gridpoint, and the other member may then
be connected to the same gridpoint through a hingepoint (that is a jointpoint with one hinge
line). Together the gridpoint and the hingepoint form a hinge with the gridpoint on one side
and the hingepoint on the other.

These differences for a user, between setting up a conventional finite element model, and
setting up a 3-D LATDYN model, can cause some conceptual difficulties depending on
how grid points are viewed. In LATDYN it is helpful to view gridpoints and jointpoints as
real physical bodies, rather than as ficticious entities. These "point bodies" are always spa-
tally miniscule, but they may have inertial properties associated with them.

When a gridpoint in LATDYN has a jointpoint attached to it, such as a hingepoint for ex-
ample, it is clearly an approximation to physical reality, because there is no possible spatial
detail present to show how the hinge axis and pin supports are offset relative to a mass
which may be lumped at the gridpoint. The implicit assumption is that the hinge axis passes
through the center of the lumped mass, and that any beam members connected to the grid-
point through the hinge do so at this same infinitesimal point.

22 Command Syntax and Conventions

Another extension solves this problem. It involves the ability to define a rigid body as
comprising a number of gridpoints without using constraints and employing only the de-
grees of freedom for a single gridpoint. In the formulation, these dependent gridpoints are
refered to as "rigid body offset points", but from the users point of view they are identical
to any other gridpoints where finite elements may be connected.

These two concepts make it possible to define a rigid body with several grid points spatially
offset from each other. In this way the system of adding jointpoints to a gridpoint gains
considerably in generality because it is possible to include any spatial detail necessary for
accurate modeling of a structure, as different joints may be defined at different offset
points. Examples of how this may be done are shown in the Demonstration Problem
Manual.

Coordinate Systems

In addition to the global coordinate system LATDYN allows a user to define additional co-
ordinate systems through the AXES command. These coordinate axes may remain fixed
relative to the global system for the entire analysis or may move with any specified part of
the structure which is being modeled.

Fixed coordinate axes are primarily useful during the setup phase of model development.
During a transient dynamic analysis however, which involves large angular rotations, it is
often necessary to use moving frames of reference. Moving frames of reference can also
be created, as indicated above, by attaching a previously defined set of axes to a gridpoint.
The user defined coordinate system then moves with the gridpoint to which it is attached
throughout the entire transient analysis.

User Defined Conditions, Variables, Vectors, and Operations

During a transient analysis it is not unusual for a user to wish to change some of the initial
specifications of the model. LATDYN enables a user to accomplish this by allowing com-

mands to be qualified as being subject to conditions. When a particular condition is "true"

then the commands which are subject to it are active; when the condition is "false” then the
commands are inactive.

For example, a constraint which involves the lockup of a deployable truss joint may be ini-
tially inactive when the truss is packed. When the truss deploys, then the joint is required to
lock and this is accomplished by activating the constraint. This process is programmed by
making the constraint which controls the locking of the joint, subject to a condition which
includes the angle at which the joint locking mechanism will activate. Initially this condition
will be "false" and at some time during the analysis, when the angle condition is satisfied,
will become "true" and the constraint will be imposed.

In general the conditions which commands may be subject to, are defined by the user.
These conditions may be as simple as a test on the relative angle of two beam members at a
hinge, as described above, or may involve a complicated sensing and averaging of multiple
filtered accelerations with time delays.

Conventions 23

Another way in which a user may write commands which change during an analysis, is by
using parameters which are user defined variables (Q-variables) or user defined vectors
(Q-vectors). (Note, however, that only a few commands allow this to be done.)

For example, a user may wish to apply a control force to a particular location on a space
structure. This control force may be proportional to the weighted average of filtered accel-
erations from several parts of the structure. In LATDYN it is possible to write an expres-
sion which defines a Q-variable to be the magnitude of such a control force.

SYNTAX

Every language needs syntactical rules and the LATDYN Command Language is no excep-
tion. In some respects LATDYN contains many more capabilities than conventional struc-
tural finite element codes and the command language is more complicated.than in some
other codes We have however, tried to make the syntax self-consistent, easily memorized,
and containing no unnecessary rules.

With many software packages, especially those developed for personal computers, there is
no command language. Instead a user accomplishes all input to the program through a
menu structure. Even some modern engineering analysis codes have adopted a menu
structure for the user interface. We have not adopted this approach because although it does
offer greatly increased simplicity when learning a code, it also has the drawback that it pre-
sents significant restrictions on the range of operations which can be accomplished. Menu
structures are also renown for enforcing unnecessary tedium on the advanced user.

A command language structure also has other advantages. A user may lay out his model
complete with comments and retain it in a self contained form on paper and/or in a com-
puter file which may be easily retained, viewed, copied, edited, updated, or modified in
any way using a word processor or text editor.

In contrast to this, files retained from a program operating under a menu interface do not
necessarily reflect the detailed sequence or character of the input. They do not usually con-
tain any user comments, and frequently may only be viewed or printed using the program
itself.

General Format

A command is a directive to LATDYN which begins with a command name and which may
be followed by one or more parameters. For example, the directive

TIMESPAN 200 800
begins with the TIMESPAN command and is followed by the parameters 200 and 800.

Each of the command names have "aliases", abbreviated and/or alternate names. For ex-
ample, the directives

24 Command Syntax and Conventions

TIMESPAN 200 800
TIMSPAN 200 800
TSPAN 200 800

are all equivalent since TIMSPAN and TSPAN are aliases of the TIMESPAN command.

The parameters are separated from the command, and from each other, by a blank or a
comma, or a combination of the two. For clarity, the command may be suffixed with a
colon. For example, the directives

TIMESPAN, 200,800
TIMESPAN 200 800
TIMESPAN 200, 800
TIMESPAN: 200 , 800
TIMESPAN 200 800

are all equivalent.
Not all parameters are numeric. The directives

COMPONENT Base
LINSPRING Spl #G1#G2 2.63 0

create a new component named "Base" and a lineal spring named "Sp1" respectively. In
general, when named entities such as these are being created they do not have to be en-
closed in quotes. However, when named entities are referenced or if there are spaces in the
name itself, then the name must be enclosed in single or double quotes. For example, the
directives

COMPONENT 'Section 1'
COMPONENT "Section 1"

are equivalent. Notice, however, that the directive
COMPONENT Section 1
creates a new component named "Section" and "1" is interpreted as a separate parameter.

Some commands have "optional" parameters, which may be omitted if the user so desires.
For example, the directive

APPFORCE: Forc3, MDV(I*"GLO), TIME(0.0, 10.0), #G1, #G2

creates a force "Forc3" in the direction of the x-axis in the global system (IAGLO), that is
active during the time from zero to ten seconds and is applied to gridpoints 1 and 2. The
TIME parameter is optional in this command and may be omitted if the user so desires. For
example, if the force is intended to be on for the whole duration of the analysis then the
command is simply

APPFORCE: Forc3, MDV(I*GLO) ,, #G1, #G2

Conventions 25

where the two commas together indicate an omitted parameter. Note that the following di-
rectives are equivalent:

APPFORCE Forc3 MDV(IAGLO) ,, #G1 #G2
APPFORCE:Forc3, MDV(I*GLO), #G1,#G2
APPFORCE:Forc3 MDV(IAGLO),, #G1,#G2

APPFORCE: Forc3 MDV(AGLO) ,, #Gl1 #G2

but that the directive
APPFORCE: Forc3 MDV(I*GLO) #Gl1 #G2

is illegal because the omitted parameter is not indicated by two adjacent commas. When the
omitted parameter is the last parameter, then the two commas do not have to be used.

Continuation Lines

Some directives may be too long to fit on a single 80-character line, and will have to be
continued onto the next line. The continuation character is the ampersand, "&". For exam-
ple, the directive)

AXES 'Region 2' ORIGIN(1,1,1) ROTATE(REL,Z,-45,X,120,Y,-15)
could also take the form

AXES 'Region 2' ORIGIN(1,1,1) &
ROTATE(REL,Z,-45,X,120,Y,-15)

Up to 100 lines (1 beginning line and 99 continuations) are allowed for in a single direc-
tive. The "&" character does not have to be located in the last column of the line (that is, it
may be followed by spaces).

Comments

Large collections of directives usually benefit from a generous sprinkling of comments.
The comment character is the dollar sign, "$", and everything to the right of it is ignored by
the preprocessor. There are two types of comments: stand-alone and in-line. Stand-alone
comments have a dollar sign at the beginning of the line. For example, the directive

$ Control points for one 5-meter Space Station bay.

is a stand-alone comment. In-line comments are appended to actual directives. For exam-
ple, the directive

GRIDPT #G12 100 0200 $ create gridpoint 12
contains an in-line comment. When in-line comments and continuation characters are

mixed, the continuation character preceeds the in-line comment character. For example, the
directive

26 Command Syntax and Conventions

AXES 'Region 2' ORIGIN(1, 0.6, 3.52) & $ define the region 2 axis system
ROTATE(REL,Z,-45,X,120,Y,-15)

demonstrates how the two may be mixed.

Ditto Commands

A "ditto" feature is available when entering many occurences of the same command. For
example, the directives

GRIDPT #G21 100400 200
GRIDPT #G22 200 400 200
GRIDPT #G23 300 400 200
GRIDPT #G24 100 500 200
GRIDPT #G25 200 500 200
GRIDPT #G26 300 500 200
GRIDPT #G27 100 600 200
GRIDPT #G28 200 600 200
GRIDPT #G29 300 600 200

may also be written as

GRIDPT #G21 100400 200
" #G22 200 400 200
" #G23 300 400 200
“ #G24 100 500 200
" #G25 200 500 200
" #G26 300 500 200
* #G27 100 600 200
" #G28 200 600 200
" #G29 300 600 200

CONVENTIONS

Order of Definitions

An important convention embodied in the design of the LATDYN Preprocessor is that an
entity must be defined before it is used. This convention applies to all gridpoints,
reference points, jointpoints, coordinate systems, reference vectors, table variables, table
vectors, springs, dampers, members, and all other named entities. There are three major
exceptions to this rule, Q-variables, Q-vectors, and Condition Labels.

Conventions 27

The Preprocessor checks Q-variable and Condition Label definitions only after it has read
all commands. If one has been used but not defined then it will issue an error. Q-vectors
are not checked for definition. If a Q-vector is used but not defined, then a null vector will
be used.

Conditional Commands

Many of the commands may be made conditional. That is, if at the end of the data for a
command the character "?" appears followed by a condition label, then the command is
conditional.
This means that the command is only active provided that the condition is TRUE. If at any
time the condition becomes FALSE, then the command becomes inactive. For example, the
directive
C21: XD,#G3) .GT. 1.0
defines condition 21 (the x-displacement of gridpoint 3) > 1.0. The directive
LINSPRING Spl #G1 #G2 263 0 ?7C21

establishes a conditional lineal spring which is active only when condition 21 is true. The
? C21 is called a condition label.

Condition labels have a variety of appearances. For example, the directives

LINSPRING Spl #G1#G2 2.63 0 721

LINSPRING Spl #G1#G2 2.63 0 ? 21
LINSPRING Spl #G1#G2 2.63 0 7C21
LINSPRING Spl #G1#G2 263 0 ? C21

LINSPRING Spl #G1#G2 2.63 0 7CL21
LINSPRING Spl #G1#G2 2.63 0 ? CL21

are all equivalent. If a condition label is allowed, it is always the directive's last parameter.
When a condition label is defined it takes the form

CLj: (logical condition) or,
Cj: (logical condition)

A condition label may also be used as a logical variable inside the logical condition itself.
For example,

CL6: (Q2.GT.1).AND. CL2

That is, condition 6 will be true provided that two conditions are satisfied, namely
Q2 must be greater than 1, and, condition 2 must be true.

28 Command Syntax and Conventions

When a condition label is used in this way inside a condition it is called a "condition vari-
able" and must be referenced in the form CLj. The alternate form Cj is not allowed for
condition variables.

Multiple Versions of Singular Commands

Some commands which use condition labels are "singular”, meaning that the command
may be specified many times, but all occurences after the first must have a condition label.
For example, the directives

TIMESTEP: .01
TIMESTEP: .005 ?C3
TIMESTEP: .001 ?C7

establish a baseline (default) time step increment at .01 seconds. When condition 3 is true,
the timestep increment becomes .005 seconds. If condition 7 becomes true, then the
timestep increment becomes .001 seconds. If both conditions 3 and 7 are true, then the
timestep is still .001 seconds since it is set by the most recent command in the sequence
whose condition is true. Thus, if the directives were organized as

TIMESTEP: .01
TIMESTEP: .001 ?C7
TIMESTEP: .005 ?C3

and both conditions 3 and 7 are true, then the timestep increment becomes .005 since it is
now the most recent command in the sequence.

The reason for requiring that certain commands be singular is simple. For example, in the
case of the TIMESTEP command it is not possible for the program to perform time integra-
tion using more than one timestep simultaneously. There is often a need however, to
change from one timestep to another during the integration.

Options in Command Parameters

Some LATDYN commands allow different options for portions of the sequenced data. That
is, they allow data to be specified in different ways. For example, the orientation of a beam
member about its axis may be specified by a reference point (POINT option):

FMEMBER: BeamMember#, SINGLE(startgrid#, endgrid#), &
POINT (ref.point#), beampropname

or through specifying a direction by a vector:

FMEMBER: BeamMember#, SINGLE(startgrid#, endgrid#), &
VECTOR((ref.vect.ID), beampropname

Note that in each of the above cases, the option is selected by use of a key word (POINT or
VECTOR), which is followed by a number of parameters enclosed between parentheses.

Conventions 29

Another illustration of the general form for options in parameter specification is also con-
tained in the above examples. The keyword "SINGLE" denotes that a single element beam
member is being defined, that s, the entire beam is to be represented by a single finite ele-
ment. To create a multi-element beam member, the option keyword "MULTT" is used, for
example

FMEMBER: BeamMember#, MULTI(String3), &
VECTOR(ref.vect.ID), beampropname

where "String3" is the name of a string of gridpoints as defined in a GRIDSTRING com-
mand. This FMEMBER command creates a string of finite elements along the string of
gridpoints, to form the multi-element member.

Gridpoint (and Jointpoint) Notation

In most finite element codes gridpoints (also called "nodes") are referenced in commands
and functions by an ID which consists simply of an integer.

In LATDYN, this integer ID must be preceeded by the characters "#G". If the gridpoint is
defined as being part of a component, then it must be referenced by its component ID and
its gridpoint ID, in the form "#CiGj". For example, gridpoint 3 may be referenced in a
function X as

X(D,#G3)
or if gridpoint 3 is part of component 2, then it is referenced as

X(D,#C2G3)
or if it is part of a named component "Base", then it is referenced as

X(D,#C"Base"G3)
Note that, there should be no comma or other delimeter between the "C" part of the ID and
the "G" part. Also, Gridpoint ID numbers may be repeated on different components. That
is, #C1G1 is not the same as #C2G1, and both are different from #G1.
To reference a jointpoint which is attached to a gridpoint, the format is "#GjJk", where J=
"H" for a hinged jointpoint, J= "U" for a universal jointpoint, J= "B" for a ball jointpoint.
If the gridpoint is part of a component then the ID takes the form "#CiGjJk".
In general, a jointpoint reference may be given in most places that a gridpoint reference is

required, and for most purposes a user may think of jointpoints as gridpoints. Exceptions
to this general rule are noted in the manual.

30 Command Syntax and Conventions

Reference Point Notation

Reference points are defined in a REFPT command and may be referenced in several other
commands. The form that the reference takes is the letter "R" preceeded by the "#" sign and
an integer: #Rj. For example (#R3, #R26).

If a reference point is defined as belonging to a numbered component then it is referenced
in the form #CiRj, or if it is defined as belonging to a named component then it is refer-
enced as #C"name"G;j.

Beam Member and Element Notation

Beam members consist of one or more beam finite elements The integer ID for a beam
member must be preceeded by the characters "#M" and the integer ID for a beam finite ele-
ment must be preceeded by the letter "E". A beam element may only be referenced by first
specifying its member ID.

If the member is also part of a component, then the component ID must also be given. For
example,

#M1 - to reference member 1

#M3E2 - to reference element 2 of member 3

#C2M5E4 - to reference element 4 of member 5 in component 2
#C"Flange"MS5E4 - to reference element 4 of member 5 in component "Flange”

Note: 1) There should be no comma or other delimeter between the "M" part and the "E"
part of the ID, or between the "C" part and the "M" part.

2) Element ID numbers usually start at "one" on each member and run continuously
from one to N (N=number of elements on a member).

3) Member ID numbers do not have to start with "one" on each component. There
may also be gaps in the sequence of member numbers of a component and
member numbers may be repeated on other components (#C1MI1 is not the same
as #C2M1).

Notation for Q-Variables

A Q-variable is the generic name given to user defined variables. In LATDYN, all user de-
fined variables are required to begin with the letter "Q", hence the name Q-variables. A Q-
variable is defined in one of the several types of SET commands, and the format of its def-
inition appears very much like a FORTRAN assignment statement. The right hand side of
the assignment may include any standard FORTRAN arithmetic operation, standard
FORTRAN functions, and also special LATDYN User Functions.

Conventions 31

Q-variables may be used as parameters in a number of LATDYN commands, such as ap-
plied loads and constraints. They may also appear in other Q-variable assignments. Q-vari-
ables are one of the basic tools which enable a user to program a control system.

The format for global Q-variables is Qk where k is an integer betwen 1 an 99. The format
for local Q-variables is Qname where name is any alphanumeric string not exceeding six
characters. For example, Q3, Q56, Q88 are global Q-variables whereas, QINC, QSPIN,
QTEMP are local Q-variables.

Notation for Table Variables

Table variables refer to user defined tables which are interpolated at each timestep to give
the current value of the table variable. The format of a table variable is simply defined by
the letter "T" followed by an integer in the range 1 to 99. For example, T7, T12.

Vector Notation

There are three types of vectors in LATDYN:

R7k - areference vector (k is any integer ID).
TAk - a table vector (k is an integer betweeen 1 and 99).
Q*k - a general purpose Q-vector (k is an integer betweeen 1 and 99).

In the notation shown above, all three types of vectors contain the carat symbol (*) between
the letter designator (R, T, or Q) and the ID number k.

In addition to the three types of general vectors, there are also unit vector triads which are
associated with each coordinate system:

I"GLOBAL, JAGLOBAL, KAGLOBAL - for the global coordinate system (GLO
and GLOB are permitted abbreviations),
and

[*axesname, JAaxesname, KAaxesname - for a user defined coordinate system

The global unit vector triad does not require definition. Other user defined coordinate sys-
tem unit vector triads are automatically defined when the coordinate system is defined using
the AXES command.

Functions and Operators

LATDYN contains many functions and operators. Functions may be employed in user de-
fined conditions and Q-variables. Operators perform tasks such as filtering,setting up, or
multiplying vectors. These parts of the LATDYN Command Language are restructured by
the Preprocessor into FORTRAN code which is then linked with the LATDYN object code.

Because of this, there is great user freedom in how to use these capabilities.

32 Command Syntax and Conventions

However, the penalty paid for this latitude is that it is difficult to devise procedures to fully
check the syntax and parameters in these commands. One checking facility which has been
included in LATDYN is a user option which is invoked by placing the "@" character in
front of a function or operator.

When the LATDYN Preprocessor detects a function or operator preceeded by a @, then it
checks the number, type, and where possible the range, of the arguments for that function
or operator.

String Replacements

The DEFINE command of 3-D LATDYN enables the replacement of any alpha-numeric
strings which begins with the special character "!" and which ends with a comma ora
space, wherever it occurs throughout the command sequence, to be replaced with the ap-
propriate string specified in the DEFINE command.

33

5. PREPROCESSOR COMMANDS

Most of the commands listed in this manual may be considered to be LATDYN System
commands. That is, they are read and translated by the Preprocessor for the purpose of set-
ting up data for input to the LATDYN program. Other commands fall into different cate-
gories. For example, LATDYN has a category of commands whose sole purpose is to di-
rect the operation of the Preprocessor. Commands of this type are called Preprocessor
commands.

Reading a User's Input File .

The command to instruct the Preprocessor to read a user's input file takes the form:
READ, READFILE, READF

[READ: input file name |

input file name the name of the file containing LATDYN command
directives

EXAMPLES
READ: ROBOT.DAT

Terminating Preprocessor Operation

The command to instruct the Preprocessor to terminate takes the form:
END, EXIT, HALT, QUIT, STOP
[END : |

EXAMPLES
END

Directing Preprocessor Echo Messages

When the Preprocessor reads a user directive it echos that directive either to the user’s in-
teractive display screen or to a file. The form of the command to specify this action is:

34 Preprocessor Commands

ECHO, ECH

[ECHO: echo message destination |

echo message destination the name of the file to which echo messages are to be sent
or the word "ME" to direct echo messages to the screen of
the users inteactive terminal. The default is the file ECHO.

EXAMPLES
ECHO: ME
ECHO: SCRATCH

Directing Preprocessor Fatal Error Messages

When the Preprocessor encounters an error in a user directive it categorizes that error as a
"fatal” error or as a "warning" error. Fatal errors cause a mandatory termination of the job,
and no output files for the LATDYN program are produced. A user has the option of direct-
ing fatal error messages to an interactive display screen or to a file. The form of the com-
mand to specify this action is:

FATALS, FATAL, FAT

[FATALS: fatal message destination |

Jatal message destination the name of the file to which fatal messages are to be sent ,
or the word "ME" to direct fatal messages to the screen of
the users inteactive terminal. The default is ME.

EXAMPLES
FATALS: ME
FATALS: SCRATCH

Directing Preprocessor Warning Error Messages

When the Preprocessor encounters an error in a user directive it categorizes that error as a
“fatal” error or as a "warning" error. Warning errors do not cause a mandatory termination
of the job. A user has the option of directing warning error messages to an interactive dis-
play screen or to a file. The form of the command to specify this action is:

WARNINGS, WARNING, WARN

[WARNINGS: warning message destination]

warning message destination the name of the file to which warning messages are to be
sent , or the word "ME" to direct warning messages to the
screen of the users inteactive terminal. The default is
WARNINGS

Preprocessor Commands 35

EXAMPLES
WARNINGS: ME
WARNINGS: SCRATCH

37

6. TOOLS FOR MODEL SETUP

This section includes information on commands to assist the user in setting up a LATDYN
model. These include coordinate systems which may be defined in a variety of ways, spe-

cial Euler angle systems, reference points and reference vectors and components, specified
default items, and parameter substitution.

Some features which appear simple can perform quite complicated operations and it may
not always how things have been done. This is particularly true for model setup because,
as shown in the tutorial section of this manual the LATDYN system is divided into three
programs, and it is usually semi-transparent to the user which operations are performed by
the Preprocessor program and which are performed by the LATDYN program. To help to
avoid confusion, this section explains which operations that are associated with each com-
mand are performed by each program.

COORDINATE AXES AND EULER ANGLES

It is often useful to define additional sets of coordinate axes. This may be accomplished
with the AXES command. Moving coordinate systems may be created by using the
ATTACH command to attach a previously defined coordinate system, to a part of the
structure being modeled.

The AXES command functions primarily within the Preprocessor which computes the ap-
propriate transformation matrices for transforming subsequent entities which are defined in
this coordinate system.and performs the appropriate transformations. The ATTACH com-
mand on the other hand functions primarily within the LATDYN program which receives
axis definition information from the Preprocessor and uses it to set up moving coordinate
systems, where required.

Creating a New Coordinate System

There is a unit vector triad which is associated with each coordinate system: INGLO,
JAGLO, KAGLO - for the global coordinate system, [*axesname, JAaxesname,
K”axesname - for a user defined coordinate system. The global unit vector triad does not
require definition. User defined coordinate system unit vector triads are automatically de-
fined when the coordinate system is defined using the AXES command. The form of the
AXES command is:

paGE_3 {o INTENTIONALLY BLANK
PRECEDING PAGE BLANK NOT FILMED

38 Tools for Model Setup

AXES, AXIS, AX

AXES: new axesname, OPTION for origin spec., OPTION for orientation spec.,
OPTION for coordinate syst. with respect to which data is specified

new axesname any alphanumeric character string identifying the new coor-
dinate system. ("GLOBAL, GLOB, GLO" are reserved
names and cannot be used here.)

OPTION for origin specification - ORIGIN or omitted (default = global origin)
ORIGIN(x, y, z)

X,y,z origin of the coordinate system in Global coordinates or in
coordinates relative to a specified coordinate system (see
WRT OPTION).

OPTION for orientation specfication - ANGLE, AXPTS, ROTATE, or USANGLE

ANGLE(Yaw, Pitch, Roll) - Specification of the orientation of the coordinate sys-
tem will be by the LATDYN default Euler angle system
(yaw, pitch, roll). A definition of these is given in the next
section entitled - The Default Euler Angle System in
LATDYN.

yaw, Pitch, Roll - Euler angles giving the orientation of the new set of co-
ordinate axes.
Of the many possible conventions for definition of these rotation an-

gles, the one chosen for use as a default in LATDYN is based on a right-
handed Cartesian coordinate system with the angles defined as follows:

Yaw - The first rotation is about the y-axis, Pitch - The second rotation is
about the new position of the z-axis after the "yaw" rotation has been
performed, Roll - The third rotation is about the final resulting position of
the x-axis, after "yaw" and "pitch” rotations have been performed.

AXPTS(axlabl, x1,yl,z1, axlab2,x2,y2,22) - Orientation of the coordinate sys-
tem will be specified by two points.

axlabl label (X, Y, or Z) of the first axis to be defined.

x1,yl,z1 coordinates of a point . The first axis is defined by the line
from the origin to this point.

axlab? label (X, Y, or Z) of the second axis to be defined. (Note:
the second axis must not be parallel to the first axis.)

x2,y2,z2 coordinates of a point. The second axis is defined by the

plane containing the first axis and the new point. Thus the
second axis does not necessarily pass through the point
(x2,y2,z2), if the line from this point to the origin is not
normal to the first axis.

Note that only two coordinate axes need to be defined (X&Y, X&Z, or
Y&2Z) since the third orthogonal axis will be computed according to the
right-hand rule.

Note also that if the ORIGIN option is specified first in this command,
then that origin will be used in conjunction with the points given in this
commmand for defining the new coordinate axes. For example if the new
origin is at (1,1,1) and a point is given for the new "X" axis at (2,1,1) then
this new X-axis will have direction vector (1,0,0) paraliel to the global X-
axis, since it runs from (1,1,1) to (2,1,1) in the global system.

Coordinate Axes and Euler Angles 39

On the other hand, if the AXPTS option is spaecified before the ORIGIN
option, then the axis vectors for the new system will be initially defined
to run from the origin of the global system. When the ORIGIN option is
encountered, these vectors will be translated to this new origin. For ex-
ampls, if a point is given for the new X-axis at (2,1,1), then the X-axis di-
rection vector is (2,1,1).

ROTATE(type, axl, rotl, ax2, rot2, ax3, rot3) - Orientation of the coordinate
system will be by specification of (up to) three rotations in a
specified order.

type REL or ABS. Defines whether the rotations given in this
command are to be performed about the new (relative) posi-
tions of the coordinate axes, or about the original (absolute)
positions of the axes.

axl, ax2, ax3 axis labels (X, Y, or Z) of the axes about which rotations are
to be performed.

rotl, rot2, rot3 - rotation angles about the specified axes. Positive rotations
are clockwise as viewed from the origin of the coordinate
system along the axis of rotation.

USANGLE(rotl, rot2, rot3) - Specification of the orientation of the coordinate
system will be by the users default Euler angle system as
defined in the USEULER command.

rotl, rot2, rot3 - Euler angles giving the orientation of the new set of co-
ordinate axes. The convention used for these angles is as
given in the USEULER command.

Note: The USANGLE option allows from one to twenty rotations to be

specified.
OPTION for Coord. System relative to which data is specified - WRT or omitted
WRT(axesname) All data given in this command is specified with respect to

the named coordinate system. (If this option is omitted then
the GLOBAL system is assumed.)

axesname Name of the coordinate system with respect to which the
new system is defined. This system must already have been
defined.

EXAMPLES
AXES: Sysl ORIGIN(1 11) ROTATE(ABS X 90.0)
AXES: Tip_System ORIGIN(16.2 9.3 0.0) &
AXPTS(X 20 93 0.0 Y 162 12 0.0) WRT(Sysl)
AXES: Sys2 ANGLE(90.0 20.0 0.0)
" Sys3 ORIGIN(@30 20 20)

The Default Euler Angle System in LATDYN

Of the many possible conventions for definition of these rotation angles, the one chosen for
use as a defaultin LATDYN is based on a right-handed Cartesian coordinate system with
the angles defined as follows:

40 Tools for Model Setup

Yaw - The first rotation is about the y-axis,

Pitch - The second rotation is about the new position of the z-axis after the "yaw"
rotation has been performed,

Roll - The third rotation is about the final resulting position of the x-axis, after
"yaw" and "pitch" rotations have been performed.

This definition of rotations may be remembered by relating it to the maneuvers of an aircraft
with the x-axis along the fuselage centerline, the y-axis vertical and the z-axis along the
right wing. As the aircraft turns from the taxiway to point down the runway in preparation
for takeoff it performs a "yaw" rotation. As the aircraft takes off, its nose rises performing
a "pitch" rotation. Subsequently in preparation for executing a turn, the aircraft's right wing
drops and the left one rises as the aircraft "rolls" about the centerline of the fuselage.

Creating a User Defined Euler Angle System

Because there are many definitions of "Euler Angles" there are also many strong opinions
on which definition represents the best, or the easiest, or the most intuitive way, of defin-
ing them. LATDYN allows a user to create his or her own favorite Euler Angle Definition
by use of the USEULER command. The effect of this command is to set up this system for
a user to reference in all future AXES commands by the OPTION keyword, USANGLE.

USEULER, EULER, USEUL

[USEULER: type, ax1, ax2, ax3 |

type REL or ABS. Defines whether the rotations given in
this command are to be performed about the new (relative)
positions of the coordinate axes, or about the original
(absolute) positions of the axes.

axl, ax2, ax3 axis labels (X, Y, or Z) of the successive axes about which
rotations are to be performed. From one to twenty rotations
can be specified.

EXAMPLES

USEULER:REL,Y,Z,Y $ Goldstein's favorite system

USEULER:REL,Y,Z,X $LATDYN's default system

REFERENCE POINTS

Reference points are created by a user to provide a spatial reference either during model
setup (or, for the measurement of relative motion during a transient analysis - see ATTACH
command). Defining a reference point adds no degrees of freedom to the system.

Refaerence Points and Reference Vectors 41

Define a Reference Point

REFPOINT, REFPT, RPOINT, RPT, REF
[REFPT: ref#, x, y, z, axesname]

ref # reference point identifier (#Rj or #CiRj)
X,y 2z cartesian coordinates
axesname refers to a coordinate system defined by the AXES com-

mand. The cartesian coordinates (x,y,z) are specified in this
coordinate system.

If left blank, the default system will be assumed. The default system is
the "GLOBAL" system unless another default system is specified in the

DEFAULT command.
EXAMPLES:
REFPT: #R1 1.1 2.2 3.3 $define #R1 in Global System
" #R2 1.1 22 0

" #C3R1 0.0 0.0 0.0 C3Sys $#C3Rlis atorigin of C3Sys

REFERENCE VECTORS

There are two types of vectors in LATDYN which can be used for reference. The following
type is defined explicitly:

R~k - areference vector defined by a REFVECT command

where k is an integer ID number. In the notation shown above, a reference vector contains
the carat symbol (*) between the letter designator "R" and the ID number "k".

There is also a type of reference vector that is defined implicitly. Whenever a new coordi-
nate system is defined using the AXES command , then unit vector triads which are asso-
ciated with each coordinate axis of the system are defined automatically. They may then be
refered to as

[*axesname, JAaxesname, K*axesname - for the x,y,z axes of a user defined co-
ordinate system

The global unit vector triad does not require definition. It is always available and may be
refered to as

42 Tools for Model Setup

INGLOBAL, JAGLOBAL, KAGLOBAL - for the x,y,z axes of the global coordi-
nate system. Permitted abbreviations are

GLO and GLOB.

Define a Reference Vector

Reference vectors are defined using the REFVECT command:
REFVECT, REFVECTQR, RVECTOR, RVECT, REFV

[REFVECT. refvect ID, OPTION for vector specification |
Ref. Vector 1.D. Reference vector identifier Rk where k is an integer.
OPTION for vector spec. POINTS, RCOORD, or SCOORD (Three options are avail-

able for defining the magnitude and orientation of a reference
vector.)

POINTS(grid a# or ref a# or coords, grid b# or ref b# or coords) - base and tip of
vector will be defined by two points or their coordinates.

grid a# or ref a# or coords - grid or reference point identifier at base of
vector (#Gj, R#j, or #CiG;j), or cartesian coordinates of a
point in a specified coordinate system (x,y,z,axesname).

grid b# or ref b# or coords - grid or reference point identifier at tip of vec-
tor (#Gj, R#j, or #CiGj), or cartesian coordinates of a point
in a specified coordinate system (x,y,z,axesname).

RCOORD(x,y,z, axesname for definition) - Cartesian (Rectangular) Coordinates

Option

x,y,z Cartesian (rectangular) coordinates of tip of vector. The base
of the vector is at the origin of the specified coordinate sys-
tem.

axesname for def. - refers to a coordinate system defined in the AXES
command. Base of vector is at origin. The default is the
global system.

SCOORD (Mag, yaw,pitch, axesname for def.) - Spherical Coordinates Option
Mag Vector magnitude
yaw, pitch yaw and pitch angles

axesname for def - Refers to a coordinate system defined in the AXES
command. yaw & pitch are defined in this system. The de-
fault is the global system.

NOTE: A reference vector may be fixed in a moving frame of reference. That is, it may maintain a constant
orientation with respect to any physical part of the model - see ATTACH command.

EXAMPLES
REFVECT: RA1 POINTS(#G3, 0,1,1,GLO) $ Vect. runs from #G3 to global point
$ 0,1,1).

REFVECT: RA6 POINTS(#G3, #G4) $ Vect. runs from #G3 to #G4.
REFVECT: R* POINTS(#RS8, #G4) $ Vect. runs from #R8 to #G4
REFVECT: RCOORD(4,5,6, Sys2) $ Vect runs from origin of Sys2,

Refarence Points and Reference Vectors 43

$ to Sys2 point (4,5,6)

REFVECT: SCOORD(10, 45,90, GLO) $ Vect of magnitude 10, runs from global
$ origin at yaw and pitch angles of 45

$ and 90 degrees respectively.

USE OF COMPONENTS

Grid Points and members may be defined as parts of a component simply by assigning
them a component I.D. when they are created. This facility is useful in itself simply as an
aid in keeping track of grid point, reference point, and member number since items that are
part of a component have an additional unique identifier. For example, #C1G1, #C2Gl,
and #G1 are all different unique gridpoints.

Before this capability may be used however, it is first necessary to declare a component by
the COMPONENT command. For declaring the existence of a new component, this com-
mand takes the form,

COMPONENT, COMP
[COMPONENT: new cmpnt. name B

new cmpnt. name The name of the new component to be declared. This name
may take one of two forms:
a) Integer I.D. - #Ci (The component is to be referenced by
an integer I.D. which takes the form #Ci where "i" is the in-
teger identification, e.g. #C1, #C6, #C23).
b) Name L.D. - #C"name" (The component is to be refer-
enced by an alphanumeric LD. contained in quotes, ¢.g.
#C"Base", #C"ARM"). Note: when component has no
spaces in its name then the quotes(" ") do not have to be
used in this command.

EXAMPLES:

COMPONENT: #Cl1
" #C"Longeronl"
" #C23

COMP: C10

PARAMETER SUBSTITUTION AND SETTING DEFAULTS

Most of the commands listed in this manual may be considered to be LATDYN System
commands. That is, they are read and translated by the Preprocessor for the purpose of set-

44 Tools for Modsl Setup

ting up data for input to the LATDYN program. Some other commands fall into a slightly
different category.

For example, the Preprocessor contains several advanced features which are especially use-
ful for building large data cases, or for building multiple data cases which differ only by a
few command directives or parameters. These features include the capability for parameter
substitution and for resetting several system defaults from directives contained in the user
input.

Parameter Substitution

The purpose of parameter substitution is to allow a user to easily change frequently occur-
ing items in the input data. It may also be used to highlight particular parameters in the in-
put data for the purposes of conducting a parameter trade study. When parameters for
substitution appear in the body of the input file they must be preceeded by the "!" charac-
ter. When the Preprocessor detects this special character, it recnogizes that a parameter to
be substituted will follow and performs the substitution. The command to define a parame-
ter has the form:

DEFINE, DEF
[DEFINE: parameter name, value to be substituted for parameter |

parameter name alphanumeric ID for parameter

value to be substituted for parameter - alphanumeric string to be substituted for all subse-
quent occurrences of the parameter

EXAMPLES

$ parameter name value

DEFINE: LocationX 7.15697E4

$ grid# X Y z

GRIDPT: #GS5 !LocationX 5.1 94
GRIDPT: #G6 !LocationX 83 94
GRIDPT: #G7 !LocationX 1496 94
GRIDPT: #G8 !LocationX 17.77 94

Set Default Component, Axes, Gridpoint, Jointpoint, Member or
Element

A set of useful features associated with components, axes, gridpoints, jointpoints, refer-
ence points, members, and elements is the ability to define and redefine defaults. In subse-
quent commands, if the ID for these entities are omitted, then the Preprocessor will assume
the default setting for that entity as specified in.the DEFAULT command This capability is
especially useful for shorthand notation and in creating complex structures. The form of the
command is,

Use of Components, Setting Defaults 45

DEFAULT, DEFAUL, DEFAU, DEFA

[DEFAULT:

item for which default is given, default ID

item for which default is given COMPONENT, COMP, or CO for specifying a

default ID

component default,

AXES, AXIS, or AX for specifying a coordinate system de-
fault

GRID for specifying a gridpoint default,

HINGE or HIN for specifying a hingepoint default

BALL for specifying a ballpoint default

UNI for specifying a unipoint default

MEMBER or MEMB for specifying a member default
ELEMENT or ELEM for specifying an element default

the ID to be used as a default for item specified.

Iif the item to be defaulted is COMPONENT then this ID may take one of
two forms:

a) Integer I.D. - i (All generic component references are to be renamed
by the integer "i". Thus, the following generic references #CG1, #CG4,
#CG7, become #CiG1, #CiG4, #CiG7.)

b) Name I.D. - name (All generic component references are to be re-
named by an alphanumeric |.D. contained in quotes, e.g. #C"Base”,
#C"ARM". Thus the following generic references #CG1 and #CG4, be-
come #C"name"G1 and #C"name"G4).

if the item to be defaulted is AXES then this ID is an axesname. This al-
lows a user to name a default coordinate system, which has already
been created by the AXES command, for use with all following GRID-
POINT, GRIDSTR, GRIDSTRE OR REFPT commands. That is, if no co-
ordinate system is named in these commands, then the system speci-
fied here will be used instead of the GLOBAL system.

If the item to be defaulted is GRID then this ID is an integer " giving.the
ID of the default gridpoint #G;j. All generic gridpoint references are to be

renamed by the integer j". Thus, the following generic references #C1G,
#G, #C2GH1, become #C1Gj, #Gj, #C2Gj.

If the item to be defaulted is HINGE then this ID is an integer "k" giv-
ing.the ID of the default hingepoint #Hk. All generic hingepoint refer-
ences are to be renamed by the integer "k". Thus, the following generic
references #C1G2H, #G1H, #C"arm"G5H, become #C1G2Hk, #G1Hk,
#Crarm"G5Hk.

If the item to be defaulted is BALL then this ID is an integer "k" giv-
ing.the ID of the default ballpoint #Bk. All generic ballpoint references
are to be renamed by the integer "k". Thus, the following generic refer-
ences #C1G2B, #G1B, #C"arm"G5B, become #C1G2Bk, #G1Bk,
#C"arm"G5Bk.

If the item to be defaulted is UNI then this ID is an integer "k" giving.the
ID of the default unipoint #Uk. All generic unipoint references are to be
renamed by the integer "k". Thus, the following generic references
#C1G2U, #G1U, #C arm"G5U, become #C1G2Uk, #G1UKk,
#C"arm"G5sUk.

If the item to be defaulted is MEMBER then this ID is an integer "j" giv-
ing.the 1D of the default member #M;. All generic member references are
to be renamed by the integer j". Thus, the following generic references
#C1M, #M become #C1M,;, #M;.

If the item to be defaulted is ELEMENT then this ID is an integer k" giv-
ing.the ID of the default element #MjEk. All generic member references

46 Tools for Model Setup

are to be renamed by the integer "k". Thus, the following generic refer-
ences #C1MjE, #MjE become #C1M|Ek, #MjEk.

EXAMPLES

One example of the utility of the DEFAULT command is achieved by combining it with the READ command to
generate multiple copies of a component located in different physical locations. For example, the compo-
nent command may be used o set up a default for component ID and coordinate system as follows:

DEFAULT: COMPONENT 1
" AXES SYS1

READ: xfile

DEFAULT: COMPONENT 2
" AXES SYS2

READ: xfile

DEFAULT: COMPONENT 3
" AXES SYS3

READ: xfile

where the file "xfile” may contain the following,

$ gridd x y z
GRIDPT: #CG1, 0, 0, O

%RIDPT: #CG2, .1, 0, O
%RIDPT: #CG3, 3.25, 6.8, 9.3
%RIDPT: #CG4, 5.93, 24.71, 8.56
%RIDPT: #CGS, 7.40, 45.77,0.0
%RIDPT: #CG6, 44.1, 33.33, 155

$
GRIDPT: #CG7, 12.7, 159, 17.556
$

Note that relative references are also permitted. For example, the following sequence of commands defines
gridpoints #G51 through #G57:

DEFAULT: GRID 50

g gridd x y z
gR]DPT: #G+1, 0, 0, O
%RIDPT: #G+2, .1, 0, O
%RIDPT: #G+3, 3.25, 6.8, 9.3
%RIDPT: #G+4, 593, 24.71, 8.56
%}RIDPT: #G+5, 7.40, 45.77,0.0

$
GRIDPT: #G+6, 44.1, 33.33, 155
$

Use of Components, Setting Defaults 47

GRIDPT: #G+7, 12.7, 159, 17.556
$

The following sequence of commands defines gridpoints #C2G8, #C2G9 and #C2G10:

DEFAULT: GRID 9
$

$ grid# x y z
GRIDPT: #C2G-1, 0, 0, O

$

GRIDPT: #C2G, .1, 0, O

$

GRIDPT: #C2G+1, 3.25, 6.8, 9.3
$

Clear Default Component, Axes, Gridpoint, Jointpoint, Member or
Element

The NODEFAULT command is the converse of the DEFAULT command. Its action is to
erase defaults established in previous DEFAULT commands. The form of the command is,

NODEFAULT

[NODEFAULT: item for which default is to be cleared]

item for which default is to be cleared - COMPONENT, COMP, or CO for clearing a
component default,
AXES, AXIS, or AX for clearing a coordinate system de-
fault
GRID for clearing a gridpoint default,
HINGE or HIN for clearing a hingepoint default
BALL for clearing a ballpoint default
UNI for clearing a unipoint default
MEMBER or MEMB for clearing a member default
ELEMENT or ELEM for clearing an element default

EXAMPLES
NODEFAULT: COMP
NODEFAULT: AXES

Show Default Component, Axes, Gridpoint, Jointpoint, Member or
Element

The SHOWDEFAULT command is intended for interactive operation with the preproces-
sor. Its action is to show defaults established in previous DEFAULT commands. The form
of the command is,

48 Tools for Model Setup

SHOWDEFAULT
[SHOWDEFAULT]

|EXAMPLES
SHOWDEFAULT

49

7. DEFINING A STRUCTURAL MODEL

PROPERTIES

Commands in this section set up properties which are then available for use by subsequent
commands. For example, the MATPROP command may be used to set up material proper-
ties for aluminum which may then be used in a BEAMPROP command to define the cross-
sectional mass and stiffness properties of a beam. These beam properties may then be used
by subsequent FMEMBER and RMEMBER commands to create a structure consisting of
beam members with these cross-sectional properties.

Define a Material Property

The MATPROP command enables the definition of an isotropic set of material properties
for use in subsequent commands to create structural entities such as beam members. The
form of the command is,

MATPROP, MATPRO, MAT
[MATPROP; Matname, E, G, rho]

Matname any alphanumeric character string. The same material name
cannot be used in two MATPROP commands.

E Young's modulus

G Shear Modulus

rho mass density

EXAMPLES

MATPROP: Alum 1.LE7 4E7 .101
MATPROP: StSteel 2.8E7 1.2E7 .29

Define the Properties of a Beam Cross-Section

The properties of a beam cross-section are defined in a BEAMPROP command. These
properties include a reference to a material property (which should be defined before this
command is used), and calculated values of cross-sectional area and moments of area. The
command may be made conditional to allow beamproperties to change during a transient
analysis (see "Multiple Versions of Singular Commands” in Chapter 4). The form of the
command is, '

50 Defining a Structural Model

BEAMPROP, BPROP, BPRO

{BEAMPROP; beampropname, matname, A, ly, 1z, J ? Cj

]

beampropname

Matname

A

Iy

1z

J

G
EXAMPLES

BEAMPROP: TrussA
BEAMPROP: TrussB

any alphanumeric character string. The same beam-
propname cannot be used in two BEAMPROP commmands

refers to a material name defined by a MATPROP command.

beam X-sectional area

second moment of area about y-axis of beam
second moment of area about z-axis of beam

polar moment of area (Iy + 1z)

optional condition label

Alum 5.6 350
StSteel 2.5 70

350
150

700
220

Define The Properties of a Lumped Mass

The MASSPROP command allows the properties of a lumped mass to be specified. A
lumped mass does not actually become part of the structure, until it is created and "stuck"
onto a gridpoint or jointpoint by an ADMASS command. Each ADMASS command refers
to a set of lumped mass properties specified by a MASSPROP command. When a lumped
mass is created by an ADMASS command, these properties are transformed to the req
position and orientation. Thus, a lumped mass may be specified in a MASSPROP com-

mand using the most convenient coordinate system for the user since it may be oriented and

positioned later

If several identical lumped masses are used in a structure, it is only necessary to define one
set of mass properties in a MASSPROP command. Later ADMASS commmands may re-
fer to this same set of properties, rotate and translate them in a variety of ways, and "stick"

them onto multiple gridpoints or jointpoints.

A complex rigid mass which is composed of several simple geometric constituents may be
defined by multiple MASSPROP commands, one for each of its simpler geometric con-
stituents. These may later be reoriented, positioned, and attached to the same gridpoint or
jointpoint by ADMASS commands to form the composite complex mass.

MASSPROP, MSPROP, MASPRO, MASS

[MASSPROP: massname, mass, X, Y, Z, Ix, ly, Iz, Ixy, Ixz, lyz

massname

mass
X, ¥z
Ix, Iy, Iz

any alphanumeric character string. The same massname can-
not be used in two MASSPROP commands.

magnitude of the mass

coordinates of center of mass

moments of inertia about x,y,z axes

Material, Beam and Mass Properties 51

Ixy, Ixz, Iyz products of inertia

EXAMPLES
MASSPROP: Cylinder 3.267 ,

5.6,7.3,9.9 572.2,572.2,1987.4 860, 920, 920
MASSPROP: Sphere 3.267 5.6,7.

3,9
3,00 450,450,450 0,0,0

GRIDPOINTS

Gridpoints are the basic conceptual entities on which a structural model in LATDYN is
built. As in most finite element programs for structural modeling, a gridpoint is set up as a
ficticious entity in space. The finite element model is then constructed by connecting finite
elements (such as beam members) between gridpoints.

When a gridpoint is defined in LATDYN it is located at a specified point in 3-D space. It
has zero mass, zero moments and products of inertia, and occupies zero volume. However,
LATDYN anticipates that this gridpoint is going to be used as a structural "building block"
by the user, so LATDYN automatically assigns six degrees of freedom to it when it is cre-
ated. If the user defines a gridpoint and never attaches any finite elements or masses to it,
then LATDYN's computations will blow-up, because a mass matrix with zeroes on the di-
agonal will have been generated. Physically this means that any force however small (even
one due to numerical rounding error in the computer), will cause an infinite acceleration on
a massless gridpoint.

Define a Single Grid Point

LATDYN has several commands to create gridpoints. The most basic of these commands
creates a single gridpoint and has the form,

GRIDPT, GRID, GRPT, GR
[GRIDPT: grid #, x, y, z, axesname |

grid# ‘grid point identifier (#Gj or #CiGj, where i = component
number, j = gridpoint number)

X, ¥z cartesian coordinates

axesname the cartesian coordinate system in which the coordinates
(x,y,z) are specified (must already have been created by an
AXES command).

If left blank, the default system will be assumed. The default system is
the "GLOBAL" system unless another default system is specified in the
DEFAULT command.

EXAMPLES
GRIDPT: #G1 2.0 6.0 5.3
" #G3 2.0 6.0 103

52 Defining a Structural Model

" #CI1G1 0 0 O Sysl $ define #C1G1 at origin of Sysl
" #G6 13E2 254E2 0 Ax2

Define a String of Equally Spaced Gridpoints Between Two
Coordinate Locations

There are several possible reasons for wanting to create a straight line of equally spaced
gridpoints, but the usual reason is for multi-element beam member. Once the lineal string of
gridpoints is created, a multi-element beam member is constructed by attaching identical
beam finite elements between each successive pair of gridpoints.

Sometimes it is useful to first run a model with one finite element in a beam member. After
studying the results of this crude model it may be desireable to modify the model to have
two, five or ten finite elements per member. LATDYN provides an easy way to do this by
using "gridstrings".

A string of gridpoints may be defined and given a name by one of the following gridstring
commands. This name may be referenced in the FMEMBER or RMEMBER commands.
To change the number of finite elements in a beam member it is only necessary to change
the number of gridpoints in the gridstring.

The form of the command to create a string of equally spaced gridpoints between two coor-
dinate locations is,

GRIDSTR, GRIDSTRING, GRSTR

{GRIDSTR,; gridstring name, grid #, ng, x1, y1, z1, X2, y2, z2, axesname |

gridstring name alphanumeric name for gridpoint string to be created (two
gridstrings with the same name may not exist).

grid # gridpoint identifier (#Gj, #CiGj, where i = component

number, j = gridpoint number). Defines the ID of the first
new gridpoint to be created (at location x1,y1,z1).
New gridpoints are sequentially numbered incrementing by "one” from

this ID. if a component number is part of the ID then all gridpoints in the
string will belong to the same componaent.

ng number of grid points to be defined. This is equal to the total
number of gridpoints in the string (must be > or = 2).

xl,yl,z1 cartesian coordinates of first grid point in string

x2,y2,22 cartesian coordinates of last grid point in string

"axesname" the cartesian coordinate system in which the coordinates
(x,y,z) are specified (must already have been created by an
AXES command). ' ‘

If left blank, the default system will be assumed. The default system is
the "GLOBAL" system unless another default system is specified in the
DEFAULT command.

Gridpoints and Gridstrings 53

EXAMPLES

GRIDSTR: Stringl 3 0,0,0 1,1,1 $ define three gridpoints between
$ (0,0,0) and (1,1,1) in the global system.
$

GRIDSTR: String2 10 235 28.5,40.1,16.3 System3 $ define

$ three gridpoints between (2,3,5) and (28.5,40.1,16.3) in the System3

Fill in a String of Equally Spaced Gridpoints Between Two Points
Which Have Already Been Defined

This command operates in a very similar way to the GRIDSTR command. In that command
it was assumed that neither of the endpoints of the gridstring already existed. In the present
command it is assumed that both endpoints already exist, and a gridstring is defined be-
tween them.

One possible disadvantage with the earlier command is that the final gridpoint number
changes when the number of points in the gridstring are changed. In the present command
this is not the case.

The command to fill in a string of equally spaced gridpoints between two existing grid-
points or jointpoints has the form,

GRIDSTRF, GRIDSTRINGF, GRSTRF

[GRIDSTRF: gridstringname, first new grid#, ng, start point#, end point#]

gridstringname alphanumeric name for gridpoint string. No two gridstrings
may have the same name.

first new grid # identifier for first new grid point to be created, (#Gj or

#CiGj where i = component number, j = gridpoint number).
Subsequent gridpoints to be created in the string will be
identified by gridpoint numbers incrementing by "one". If a
component number is given, then they will belong to the
same component specified.

ng total number of grid points in the string, including the first
and last. That is, the number of new gridpoints = (ng - 2).
startpoint# identifier for starting point (#Gj, #CiGj, #GjJk, or #CiGjJk

where i = component number, j = gridpoint number, k=
jointpoint number).

endpoint# identifier for end point (#Gj, #CiGj, #GjJk, or #CiGjJk
where 1 = component number, j = gridpoint number, k=
jointpoint number).

EXAMPLES
GRIDSTRF: Stringl #G101 4 #Gl1 #G2 $ define two new gridpoints
$ between #G1 and #G2 and number them #G101, #G102, #G103, #G104.

$

54 Defining a Structural Model

GRIDSTRF: String2 #G10 3 #G2H1 #G3H1 $ define one new gridpoint
$ between #G2H1 and #G3H1 and number them #G10, #G11, #G12.

Extend a String of Equally Spaced Grid Points Out from a Point
Which Has Already Been Defined

This command operates in a very similar way to the GRIDSTR and GRIDSTRF com-
mands. In the first command it was assumed that neither of the endpoints of the gridstring
already existed. In the second command it is assumed that both endpoints already existed.
In the present command it is assumed that only one endpoint already exists.

The command to extend a string of gridpoints out from an existing gridpoint or jointpoint
has the form,

GRIDSTRE, GRIDSTRINGE, GRSTRE
[GRIDSTRE: gridstringname, first new grid#, ng, start point#, x, y, z, axesname |
gridstringname alphanumeric name for grid point string

first new grid # identifier for first new gridpoint to be created, (#Gj or #CiGj
where i = component number, j = gridpoint number).
Subsequent gridpoints to be created in the string will be
identified by gridpoint numbers incrementing by "one". If a
component number is given, then they will belong to the
same component specified.

ng total number of grid points in the string, including the first.
That is, the number of new gridpoints = (ng - 1).
startpoint# identifier for starting point (#Gj, #CiGj, #GjJk, or #CiGjJk

where i = component number, j = gridpoint number, k=
jointpoint number).

X,y 2 coordinates of ending gridpoint.

axesname the cartesian coordinate system in which the coordinates
(x,y,z) are specified (must already have been created by an
AXES command).

If left blank, the default system will be assumed. The default system is
the "GLOBAL" system unless another default system is specified in the

DEFAULT command.
EXAMPLES
GRIDSTRE: Stringl #G101 4 #G1 1,1,1 $ define three new gridpoints
$ between #G1 and (1,1,1) and number them #G101, #G102, #G103, #G104.
$

GRIDSTRE: String2 #G10 3 #G2H1 4,2.59 $ define two new gridpoints
$ between #G2H1 and (4,2.5,9) and number them #G10, #G11, #G12.

Jointpoints (gridpoint, unipoint, ballpoint) 55

JOINTPOINTS

There are two possible general ways for a user to set up joints. The most computationally
efficient way is through the use of a special type of gridpoint called a jointpoint. Jointpoints
may be defined at any gridpoint, once the gridpoint itself has been defined. The other way
that joints may be created is through the use of constraints which will be discussed later.

When a jointpoint is defined, only the degrees of freedom needed for that specific type of
joint are added to the problem. This is not the case when joints are created through the use
of constraints. Also constraints may need to be stabilized, a process which requires addi-
tional iterations at each timestep.

LATDYN contains three standard jointpoints - hinge (or revolute), ball, and universal. A
jointpoint always occupies the same physical location in space as the gridpoint to which it is
attached. i i i .

Defining a Hingepoint at a Grid Point

The simplest way to think of a gridpoint/hingepoint pair is as the two sides of a hinged joint
(see Figure 5.1). A beam member or a lumped mass may be connected to either side of the
joint. For example, if a gridpoint has a hingepoint attached to it then one beam member may
be connected to the gridpoint itself and a second beam member may be connected to the
hingepoint.

Just as when a gridpoint is defined LATDYN adds degrees of freedom to the model, so
also are degrees of freedom added when a hingepoint is defined. The difference is that six
degrees of freedom get added for each gridpoint that is defined, but only one degree of
freedom gets added for a hingepoint. Thus a gridpoint by itself has six degrees of freedom
while a gridpoint/hingepoint pair has seven degrees of freedom.Since this hingepoint can-
not exist without the gridpoint to which it is attached, it is necessary that the gridpoint be
defined first.

The HINGEPT command defines two related entities. The first entity is the hingepoint it-
self. The second entity is the Hinge Axis Vector. There are several options for a user to
specify the initial direction of the hinge axis vector. After it has been defined, the hinge axis
vector remains fixed to the gridpoint moving and rotating with it. The orientation of the
hingepoint is obtained by a simple rotation from the gridpoint about the hinge axis. The
magnitude of this rotation is the angular displacement of the hinge. At the start of a transient
analysis, the angular displacement of the hinge is assumed to be zero, unless otherwise
specified.

56 Defining a Structural Model

hinge axis
Hingepoint
Gridpoint
Rectangular X-Section Beam §§ &) A Circular X—Sectiqn Be'am
Member Connected to Hingepoint. CERER Ny Connected to Gridpoint
hinge axis

Figure 7.1 Conceptual Sketch of Two Beams Connected to Gridpoint/Hingepoint Pair

The HINGEPT command has the following form,
HINGEPT, HINGEPOINT, HPOINT, HPT

[HINGEPT: hingepoint#, initial angle, OPTION for axis orientation spec.]
hingepoint# point identifier (#GiHk or #CiGjHk where i = component

number, j= gridpoint number, k= hinge number)
initial angle the initial rotation of the hinge (degrees)
OPTION for axis orientation specification - POINT, or VECTOR

POINT(axis point or coords) - Axis orientation is given by the specification of a
point. The hinge axis vector being defined extends from the
gridpoint to the axis point.

axis point or coords - gives the identifier of a reference point (#Rj or
#CiRj) or a grid point (#Gj or #CiGj). An altemate form of
the point specification is to give the coordinates
(x,y,z,axesname). The initial position of the hinge axis is
defined as the line joining the grid point to which the hinge-
point is attached, with this reference point.

VECTOR (vectID for axis) - Axis orientation is given by a vector.

Jointpoints {gridpoint, unipoint, ballpoint) 57

Vect. 1.D. for Axis - may be a reference vector or a vector from a unit triad
(RA, I*axesname, JAaxesname, KAaxesname) Vector gives
the initial orientation of the hinge axis.

EXAMPLES

HINGEPT: #G3H1 90.0 VECTOR(R"1)

HINGEPT: #G5H1 0.0 POINT(#R2)

HINGEPT: #C3G4H1 0.0 POINT(12.2,10.6,13.3,GLO)

Defining a Universal Jointpoint at a Grid Point

This command is not yet implemented. The following brief explanation is intended to illus-
trate what directions we envisage LATDYN development to take.

The simplest way to think of a gridpoint/unipoint pair is as the two sides of a universal
joint. A beam member or a lumped mass may be connected to either side of the joint,.just
as was the case for gridpoint/hingepoint pair For example, if a gridpoint has a unipoint at-
tached to it then one beam member may be connected to the gridpoint itself and a second
beam member may be connected to the unipoint.

When a gridpoint is defined LATDYN adds six degrees of freedom to the model, when a
unipoint is defined LATDYN adds another two degrees of freedom to the model. Thus a
gridpoint by itself has six degrees of freedom while a gridpoint/unipoint pair has eight de-
grees of freedom.

Defining a Ball Jointpoint at a Grid Point

This command is not yet implemented. The following brief explanation is intended to illus-
trate what directions we envisage LATDYN development to take.

The simplest way to think of a gridpoint/ballpoint pair is as the two sides of a balljoint. A
beam member or a lumped mass may be connected to either side of the joint, just as was
the case for gridpoint/hingepoint pair and a gridpoint/unipoint pair. For example, if a grid-
point has a ballpoint attached to it then one beam member may be connected to the gridpoint
itself and a second beam member may be connected to the ballpoint.

When a gridpoint is defined LATDYN adds six degrees of freedom to the model, when a

ballpoint is defined LATDYN adds another three degrees of freedom to the model. Thus a
gridpoint by itself has six degrees of freedom while a gridpoint/ballpoint pair has nine de-
grees of freedom.

58 Defining a Structural Model

BEAM MEMBERS

Beams are a basic structural building block for many structures. Flexible beam elements are
currently the only true finite element in the LATDYN library. Rigid beam members should
not be regarded as finite elements in the usual sense since they are implemented either
through constraints or through a transformation as a "rigid body offset".

Define a Flexible Beam Member Consisting of one Beam Element
or a String of Beam Elements

The flexible beam finite element currently implemented in LATDYN uses a cubic functional
for bending and linear functionals for torsion and stretching. The terminology used is that
one beam member consists of one or more beam elements.

The selection of beam elements is important. If elements are too large, then they will not
accurately represent large deformation of a beam or detailed stress distributions. If they are
too small, then high natural frequencies, which may be of no practical interest in the dy-
namic motion, will be built into the system. If an explicit integrator is used these high fre-
quencies will force a very small timestep for numerical stability, and the transient analysis
will be slow.

The form of the command to define a flexible beam member is,
FMEMBER, FMEMB, FMEM

IfMEMBER: Beam member #, OPTIONS for connection points, OPTIONS for
orientation spec., beampropname

beam member # identifier for beam member being created by this command
(#Mj or #CiMj)

OPTIONS for specifying grid points - (SINGLE or MULTI)
SINGLE (start grid#, end grid#) - for single element beam member

start grid# identifier of grid point or joint point connected at end "a" of
member. (#Gj or #CiGj or #GjJk or #CiGjJk, where i =
component number, j = gridpoint number, k= jointpoint
number, and J= (H,B or U) is the joint identifying letter.)

end grid # identifier of grid point connected at end "b" of member (#Gj
or #CiGj or #GjJk or #CiGjJk, where 1 = component num-
ber, j = gridpoint number, k= jointpoint number, and J=
(H,B, or U) is the joint identifying letter.)
The coordinate locations of the start grid# and end grid# may not be co-
incident.

MULTI (gridstringname) - for multi-element beam members

Beam Members and Rigid Bodies 59

gridstringname - this parameter should reference a gridstring name as
specified in a GRIDSTR or GRIDSTRF command.

OPTIONS for orientation specification - (POINT or VECTOR)

The X-axis of a beam member is defined to lie along its length. The y-
and z-axes are the principal axes of the beam. The following orientation
options are used to orient the (principal) y-axis of the beam member.
The (principal) z-axis is then

POINT (ref point #, grid#, or x,y,z,axesname) - Specification of the principal y-
axis orientation by a point

ref point #, grid#, or x,y,z,axesname) - The y-axis of the beam lies in the
plane which contains the x-axis of the beam and this point.
The form of the argument for a reference point is (R#j or
C#iR#j). Alternatively another grid point may be used to de-
fine this plane (#Gj or #CiGj), or the coordinates of a point
in a specified axes system may be given (x,y,z,axesname).

VECTOR (ref. or unit triad vector 1.D.) - Specification of principal y-axis orienta-
tion by a reference vector

ref. or unit triad vector I.D. - R™k, I*axesname, J*axesname, or
K7axesname. The principal y-axis of the beam lies in the
plane containing this vector and the start grid#.

beampropname references a beampropname defined in a BEAMPROP com-
mand

EXAMPLES

FMEMBER: #M1, SINGLE#G1,#G2), POINT#R1), post_arm

FMEMBER: #M3, MULTI(Truss_1), VECTOR(RA3), Truss

FMEMBER: #M4, MULTI(Truss_2), VECTOR(RA3), Truss

FMEMBER: #CTop'M1, SINGLE(#GS5,#G6), POINT(0.0 12.3 18.9, TopAxes), &
TopRib

Define a Rigid Beam Member

Although rigid members are generated from the users point of view, very much like flexible
members, they are quite different in the program. Rigid members are not finite elements in
the conventional sense. Eventually LATDYN will contain three different ways of generat-
ing rigid members, but at the moment there is only one methodology that has been imple-
mented, that is "rigid body offsets".

Rigid body offsets are implemented by a transformation from a gridpoint. Inside the com-
putational core of the program, only the degrees of freedom for the gridpoint at one end of
the member are present. No extra degrees of freedom for other gridpoints exist, although
this fact is transparent to the user.

Because this methodology is very efficient and accurate, since there are no constraints to
stabilize, this is the preferable way to implement rigid members in LATDYN.

60 Defining a Structural Model

In the way that they are presently implemented, rigid body offsets are quite restrictive. For
example, it is not possible to connect two rigid bodies together through a joint, using the
rigid body offset option. We plan ultimately to remedy this with the implementation of a
general "recursive” formulation, and this option does currently appear in the command. At
present however, only the rigid body offset is implemented and this will be assumed by the
program in all cases.

RMEMBER, RMEMB, RMEM

RMEMBER: Beam member #, OPTIONS for connection points, OPTIONS for

orientation spec., beampropname, OPTIONS for analysis algorithm

beam member # identifier for beam member being created by this command
(#Mj or #CiM;)

OPTIONS for specifying grid points - SINGLE or MULTI
SINGLE (start grid#, end grid#) - for single element beam member.

start grid # identifier of gridpoint or jointpoint connected at end "a" of
member (#Gj or #CiG;j or #GjJk or #CiGjJk, where i =
component number, j = gridpoint number, k= jointpoint
number, and J= (H,B or U) is the joint identifying letter.)

end grid # identifier of grid point connected at end "b" of member.
(#G;j or #CiGj or #GjJk or #CiGjJk, where i = component
number, j = gridpoint number, k= jointpoint number, and J=
(H,B,U, or T) is the joint identifying letter.)
The coordinate locations of the start grid# and end grid# may not be co-
incident.

MULTI(gridstringname) - for multi-element beam members

gridstringname - This parameter should reference a gridstring name as
specified in a GRIDSTR or GRIDSTRF command.

OPTIONS for orientation specification - POINT or VECTOR

The X-axis of a beam member is defined to lie along its length. The y-
and z-axes are the principal axes of the beam. The following orientation
options are used to orient the (principal) y-axis of the beam member.
The {principal) z-axis is then automatically oriented by the program.

POINT(ref point #, grid#, or x,y,z,axesname) - Specification of y-axis orientation
by a point

ref point #, grid#, or x,y,z,axesname - The y-axis of the beam is given by

the line joining the starting point of the beam member with
the reference point (R#] or C#iR#j). Alternatively another
grid point may be used to define this plane (#Gj or #CiGj),
or the coordinates of a point in a specified axes system may
be given (x,y,z,axesname),

VECTOR(ref. or unit triad vector I.D.) - Specification of orientation by a reference
vector

ref. or unit triad vector I.D. - RAk, ["axesname, JAaxesname, or
KAMaxesname

beampropname

Beam Members and Rigid Bodies 61

references a beampropname defined in a BEAMPROP com-
mand. (For a rigid member, the values specified for stiffe-
ness are irrelevant.)

OPTIONS for analysis algorithm - CNSTRNT, OFFSET, RECUR, AUTO

CNSTRNT

OFFSET

RECUR(Treename)

Treename

AUTO

EXAMPLES

NOTE: Only the OFFSET option is presently im-
plemented.

The rigid beam member is to be implemented through con-
straints.

The rigid beam is to be implemented as a rigid body offset.
That is, the second grid point specified in the command (or,
each gridpoint after the first in the case of a gridstring) will
be treated in the program as a simple rigid body offset from
the first gridpoint.

For this option to be used, the following must be true: 7
o Both gridpoints mentioned in the RMEMBER command must be simple
gridpoints. Jointpoints are not allowed.

o Only the first gridpoint may appear in another RMEMBER or RBODY
command. Neither the second gridpoint itself, or any jointpoints at-
tached to it may be part of any other rigid body or rigid member.

o K the first gridpoint appears in other RMEMBER or RBODY commands
which also specify the "OFFSET" option, then this gridpoint must be the
first gridpoint in these commands.

This rigid beam member is to be treated as part of an open
loop rigid tree mechanism.

This parameter refers to a recursion path set up in a
RBTREE command. The rigid beam member connectivity
must follow the rules for an open loop rigid body tree.

This is the default option. Algorithms in the LATDYN pro-
gram will choose which option to implement.

RMEMBER: #M1, SINGLE#G1,#G2), POINT@#R1), post_arm, OFFSET
RMEMBER: #M3, MULTI(Truss_1), VECTOR(RA3), Truss, AUTO

RMEMBER: #M4, MULTI(Truss_2), VECTOR(RA3), Truss, CNSTRNT
RMEMBER: #CTop'M1, SINGLE#GS5,#G6), POINT(0.0 12.3 18.9, TopAxes), &

TopRib

RIGID BODIES

Rigid bodies are generated in exactly the same way as rigid members. The only difference
is that the RMEMBER command automatically adds that mass which is appropriate for the
beam member being specified, whereas the RBODY command adds no mass. It is left to
the user to add the appropriate rigid lumped mass by the ADMASS command.

62 Defining a Structural Model

Eventually LATDYN will contain three different ways of generating rigid members and
rigid bodies, but at the moment there is only one methodology that has been implemented,
that is "rigid body offsets”.

Rigid body offsets are implemented by a transformation from a gridpoint. Inside the com-

putational core of the program, only the degrees of freedom for the gridpoint at one end of
the member, or one gridpoint in the body, are present.

Define a Rigid Body

RBODY, RIGIDBODY, RIG
[RBODY: bodyname, grid#, grid#,, OPTION for analysis algorithm |

bodyname alphanumeric identifier. (The same name may not be used
for two rigid bodies.)
grid#, grid#, list of gridpoints located on the rigid body which is being de-

fined by this command

OPTIONS for analysis algorithm - CNSTRNT, OFFSET, RECUR, AUTO
NOTE: Only the OFFSET option is presently im-

plemented.
CNSTRNT The rigid body is to be implemented through constraints.
OFFSET The rigid body is to be implemented as a rigid offsets from

the first gridpoint specified. That is, subsequent grid points
specified in the command will be treated in the program as a
simple rigid body offsets from the first gridpoint.

For this option to be used, the following must be true:

o All gridpoints mentioned in the RBODY command must be simple grid-
points. Jointpoints are not allowed.

o Only the first gridpoint may appear in another RMEMBER or RBODY
command. Neither the second gridpoint itself, or any jointpoints at-
tached to it may be part of any other rigid body or rigid member.

o If the first gridpoint appears in other RMEMBER or RBODY commands
which also spscify the "OFFSET" option, then this gridpoint must be the
tirst gridpoint in these commands.

RECUR(Treename) This rigid body is to be treated as part of an open loop rigid
tree mechanism.

Treename This parameter refers to a recursion path set up in a
RBTREE command. The rigid body connectivity must fol-
low the rules for an open loop rigid body tree.

AUTO This is the default option. Algorithms in the LATDYN pro-
gram will choose which option to implement.

EXAMPLES

RBODY: Pivot #G3#G4,#G5#G7 AUTO
RBODY: Root #C2G1 #C2G2 OFFSET
RBODY: Small Atm #G9,#G10,#G11 CNSTRNT

Beam Members and Rigid Bodies 63

Define a Recursion Path for a Jointed Tree of Rigid Bodies and/or
Rigid Beam Members

This command is not yet implemented. The following brief explanation is intended to illus-
trate what directions we envisage LATDYN development to take.

Rigid bodies may be created in LATDYN using several different commands (RMEMBER
for rigid beam members, RBODY for generalized rigid bodies). The way in which these
commands are implemented in the LATDYN computational core may be controlled by the
user, or may be left to the program itself to decide by using the AUTO option.

If a user elects to direct the program to set up an open loop jointed tree of rigid bodies by
recursive (rigid body) transformations then it is necessary that he also specify the paths
back to the "root" that the recursion must take. The way in which a user may specify a re-
cursion path is in the RBTREE command.

LUMPED MASSES

Lumped masses are created by the ADMASS command which is described below. First
however, it is necessary to specify the properties of the lumped mass which is to be cre-
ated. This is done using the MASSPROP command.

The MASSPROP command allows the properties of a lumped mass to be specified. A
lumped mass does not actually become part of the structure, until it is created and "stuck”
onto a gridpoint or jointpoint by an ADMASS command. Each ADMASS command refers
to a set of lumped mass properties specified by a MASSPROP command. When a lumped
mass is created by an ADMASS command, these properties are transformed to the required
position and orientation. Thus, a lumped mass may be specified in a MASSPROP com-
mand using the most convenient coordinate system for the user since it may be oriented and
positioned later.

Add a Mass to a Grid Point or Jointpoint

The ADMASS command takes a lumped mass which was defined in a MASSPROP com-
mand and attaches it to a gridpoint or jointpoint. The command has the form:

ADMASS, ADDMASS, ADMAS, ADD

[ADMASS: grid #, mass name, axesname |

grid# grid point identifier (#Gj or #CiGj or #GjJk or #CiGjlk,
where i = component number, j = gridpoint number, k= joint
point number).

massname references a mass name defined in a MASSPROP command

64 Defining a Structural Model

axesname refers to a coordinate system defined by an AXES com-
mand. The moments and products of inertia specified in the
MASSPROP command referenced above are then taken to be
given with respect to this coordinate system. If this parame-
ter is left blank, then the GLOBAL system is used.

EXAMPLES
ADMASS: #G6 Pivot Pivot_System
ADMASS: #G4 Link_Arm Link_Arm_System

MASSPROP: Cyl 56 0,00 1.893.763.76 0,0,0
ADMASS: #G2 Cyl Cyl_System

y
As defined in
xgsrf;}fiox}; As added to
structure at #G6 by
GLOBAL system ADMASS command
X in coordinate
——— system Cyl_System

Figure 7.2 Example of the Use of the MASSPROP and ADMASS Commands

ROTATIONAL ELEMENTS

Rotational elements in LATDYN consist of rotational springs, rotational dampers, and ro-
tational actuators. Rotational springs and dampers are passsive linear elements. Rotational
actuators may be non-linear active or passive devices and a substantial amount of user con-
trol may be applied to creating them. Rotational actuators are described under applied loads
in Chapter 10. A specific type of rotational non-linear joint is also included in the command
set, but this has not yet been implemented. This specific type of joint may in any case be
created by the user as a rotational actuator.

Massaes, Springs and Dampers 65

Rotational springs and dampers always act about hinge lines, so that commands which
create these el;ements require reference to a hinge line. These hinges may have been created
by transformations (adding degrees of freedom) or imposed by constraints (removing de-
grees of freedom). In the case of hinges which have been created by transformations, refer-
ences will be to hingepoints. In the case of hinges which have been created by constraints,
references will be to a hinge joint constraint name.

Define a Rotational Spring

ROTSPRING, ROTSPR, RSPRING, RSPR

[ROTSPRING: spring name, OPTION for connecting ends of spring, k, p ? Cj

spring name

alphanumeric name for rotational spring (Note: no two rota-
tional springs may have the same name.)

OPTION for connecting ends of spring - UX, CX, BX, or GX

UX (hingepoint #)

uniaxial connection for connection between a grid point and
a hingepoint attached to it.

CX (hingepoint att, hingepoint b#) - co-axial connection for connection between

two coaxial hingepoints attached to the same grid point.

BX (hingepoint a#, hingepoint b#) - bi-axial connection for connection between

any two hingepoints attached to the same gridpoint, or be-
tween two different gridpoints on the same rigid body or
rigid member.

GX (hinge constraint name) - general connection for a rotational spring about a

G

EXAMPLES

ROTSPRING:
ROTSPRING:
ROTSPRING:

hinge axis between two gridpoints, where the hinge is de-
fined by constraints. The hinge constraint name is defined by
a HINGEJOINT command. NOTE: The GX option is
not presently implemented.

spring constant (real value)

pre-rotation. Parameter allows definition of spring preten-
sion by allowing a pre-rotation of the second connection
point. A positive pre-rotation is clockwise looking along the
axis vector of the second hingepoint.

optional condition label.

When a ROTSPRING command is qualified by a condition label, it means
that the command is active when the condition is true and inactive when
it is false.

Pivot_Spring UX#GIH1) 3.625 0
p UX#GI6H1L) Q3 00 ? C3
Springé CX(#G2H1,#G2H2) 17.56 -90

66 Defining a Structural Model

Define a Rotational Damper

ROTDAMPER, ROTDAMP, RDAMPER, RDAMP

[ROTDAMPER: dampername, OPTION for connection of ends, ¢ ? Cj |

damper name alpha numeric name for rotational damper. (Note: no two
rotational dampers may have the same name.)

OPTION for connection of ends - UX, CX, BX, or GX

UX(hingepoint #) uniaxial connection for connection between a grid point and
a hingepoint attached to it.

CX(hingepoint a#, hingepoint b#) - co-axial connection for connection between
two coaxial hinge degrees of freedom attached to the same
grid point.

BX(hingepoint a#, hingepoint b#) - bi-axial connection for connection between
any two hinge degrees of freedom attached to the same grid-
point, or between two different gridpoints on the same rigid
body.

GX{(hinge constraint name) - general connection for a rotational damper about a
hinge axis between two gridpoints, where the hinge is de-
fined by constraints. The hinge constraint name is defined by
a HINGEJOINT command. NOTE: The GX option is
not presently implemented.

c damping constant (real value)
G optional condition label (Cj or CLj, j is an integer 1 to 99)

When a HINGEJOINT command is qualified by a condition label, it
means that the command is active when the condition is true and inac-
tive when it is false.

EXAMPLES

ROTDAMPER: Pivot_Damper UX#GI1H1) 8.78
ROTDAMPER: D2 UX®#GI6HI) Q3 ? C3
ROTDAMPER: Damper7 CX(#G2HI1#G2H2) 17.56

Define a Rotational Non-Linear Joint

This command postulates a specific type of rotational non-linear joint where the joint con-
tains both spring and damping aspects. That is, joint forces are proportional to a two di-
mensional function of displacement and velocity which may be input in tabular form. Since
this command has not yet been implemented, this specific type of joint may be created by
using a rotational actuator command.

Masses, Springs and Dampers 67

LINEAL ELEMENTS

Lineal elements act in a line between two gridpoints. The force exerted by a lineal element
on each of the endpoints is equal in magnitude and opposite in direction. In the case of a
lineal spring, the force is proportional to the displacement of the two points along the line
of action of the spring. In the case of a lineal damper, the force is proportional to the rela-
tive velocity of the two points along the line of action of the damper.

Complicated lineal springs and dampers with non-linear spring and damping constants may
be created easily, by using the lineal actuator command which is documented under the
section on applied loads in Chapter 10.

Flexible impacts may be analysed by creating a lineal spring and damper between the two
impacting parts of the structure, at the instant of impact, through the use of conditions.

Define an Lineal Spring Acting in a Line Between Two Grid Points

LINSPRING, LINSPR, LSPRING, LSPR

[CINSPRING: spring name, grid a#, grid b#, k; prestretch ?Cj |

Spring name alphanumeric spring name. (Note: two lineal springs may
not have the same name.)

grida# grid point identifier for one end of spring (#Gj or #CiGj)

grid b# grid point identifier for other end of spring (C#j or #CiGj)

k spring constant (real value)

prestretch spring prestretch (negative for compression, positive for ex-
tension)

Cj optional condition label (Cj or CLj, j is an integer 1 to 99)

When a LINSPRING command is qualified by a condition label, it means
that the command is active when the condition is true and inactive when
it is false.

EXAMPLES

LINSPRING: Springl #G1 #G2 3.56E4 -3.0
LINSPRING: Spring2 #G43 #G9 Q16 0 Cl
LINSPRING: Puller #C2G4 #C5G2 9.5 0.0

68 Defining a Structural Model

Define an Extensional (Lineal) Damper Acting in a Line Between
Two GridPoints

[LINDAMPER: damper name, grid a#, grid b#, ¢ ? Cj |

Damper name alphanumeric damper name. (Note: two lineal dampers may
not have the same name.)

grida# grid point identifier for one end of damper (#Gj or #CiGj)

grid b# grid point identifier for other end of damper (C#j or #CiGj)

c damper constant (real value)

Cj optional condition label (Cj or CLj, j is an integer 1 to 99)

When a LINDAMPER command is qualified by a condition label, it means
that the command is active when the condition is true and inactive when
it is false.

EXAMPLES

LINDAMPER: Damperl #G1 #G2 3.56E4
LINDAMPER: Damper2 #G43 #G9 Q16 C1
LINDAMPER: Puller #C2G4 #C5G2 95

69

8. CONSTRAINTS

Constraints in some areas of mechanics are also called boundary conditions.
Mathematically they consist of an additional set of equations which "constrain” the model to
behave in a certain way. For example, two gridpoints may be clamped together so that they
may not separate or rotate relative to each other. The equations constraining this motion
consist of six linear equations setting the displacements and rotations of the two gridpoints
equal to each other in each of their six degrees of freedom.

However, LATDYN essentially solves Newton's second law at every timestep, namely,
Mx = f

This approach requires constraint equations to be expressed in terms of acceleration.

In the case of the six linear equations to clamp one gridpoint to another, described above, it
is easy to differentiate each equation twice (with respect to time) and apply the constraints.
But this is almost a trivial case. There are many other standard constraints which are fre-
quently needed that are not nearly so simple (such as hinge joints, universal joints, cylin-
drical joints, etc.), which are complicated functions of angle and involve derivatives of ro-
tational transformations.

For many standard constraints, LATDYN takes care of this complexity for the user, and it
is only necessary to specify the constraint in a command to have it automatically applied.
The list of constraints which are built into LATDYN include hinge joints, universal joints,
ball joints, cylindrical joints, translational joints, constant distance links, fixing and clamp-
ing, and geared drive connections.

In LATDYN all constraint commands may be qualified by an optional condition label. This
means that the constraint command is active when the condition is true and inactive when it
is false. But, constraints are an integral part of the structural model and although LATDYN
allows you to add or delete them at will, it does not guarantee that you will get the correct
answers if you do this.

For example, if two gridpoints are moving towards each other during a transient analysis
and you build in a test to sense when they touch, and then use this test to turn on a CLAMP
constraint - you will not get the right answer. This is because the two gridpoints have im-
pacted. To get the correct answer the principal of conservation of momentum must be ap-
plied. LATDYN does not do this automatically. (One way to resolve the problem is to cre-
ate an elastic impact by adding a spring and damper between the two gridpoints and waiting
until the relative velocities become zero before applying the constraint.)

In general, it is okay to use a condition to turn off a constraint which has been present since
the start of the analysis, but the user must be cautious when turning on a constraint during
an analysis.

70 Constraints

JOINTS IMPLEMENTED BY CONSTRAINTS

There are two possible general ways for a user to create joints between flexible or rigid
bodies. The most computationally efficient way is through the use of a special type of grid-
point called a jointpoint as was explained in Chapter 7. When a jointpoint is defined, only
the degrees of freedom needed for that specific type of joint are added to the problem. For
example, suppose a hinge is to be created by making a hingepoint at a gridpoint. The origi-
nal gridpoint had six degrees of freedom, the hingepoint adds one for a total of seven,

The other way that joints may be created is through the use of constraints between two
gridpoints. For example, suppose a hinge joint is to be created between two gridpoints by
constraints. Each gridpoint has six degrees of freedom and there are also five constraint
equations for a total of seventeen equations to be solved at each timestep. Of course, there
are still only seven real (independent) degrees of freedom, because the five constraint equa-
tions are used to eliminate five degrees of freedom from the twelve of the two gridpoints,
but there is a lot of extra computational work involved.

Define a Hinge (Revolute) Joint via Constraints

Two gridpoints may be constrained together to operate as a hinge joint. A HINGEJOINT
command imposes five constraints which removes five degrees of freedom from the twelve
to give a net total of seven independent degrees of freedom at the joint.

The five constraints defined by the command are given a collective name by the user so that
they may be referenced in other commands (such as ROTSPRING).

HINGEJOINT, HNGEJNT, HJOINT, HINT, HINGE

HINGEJOINT: constraint name, grida¥, grido#, OPTION for axis onientation

spec. ?Cj
constraint name alphanumeric name for the constraints defined by the hinge-
joint command. (Note: two hingejoints may not have the
same name.)
grida#, gridb# identifiers of gridpoints to be joined by a hinge (#G;j or

#CiGj). Note: jointpoints cannot be used in this command.
Also note: the two gridpoints must be in the same physical
location.

OPTION for axis orientation specification - POINT or VECTOR

POINT(axis point or coords) - Axis orientation is given by the specification of a
point. The hinge axis vector being defined extends from the
gridpoint to the axis point.

axis point or coords - gives the identifier of a reference point (#Rj or
#CiRj) or a grid point (#Gj or #CiGj). An alternate form of

Joints Implemented by Constraints 71

the point specification is to give the coordinates
(x,y,z,axesname). The initial position of the hinge axis is
defined as the line joining the grid point to which the hinge-
point is attached, with this reference point. Initial hinge rota-
tion is zero.

VECTOR (vectID for axis) - Axis orientation is given by a vector.

Vect. I.D. for Axis - may be a reference vector or a vector from a unit triad
(RM, IMaxesname, JAaxesname, KAaxesname). Vector gives
the initial orientation of the hinge axis. Initial rotation angle
of the hinge is zero.

G optional condition label (Cj or CLj, j is an integer from 1 to
99).
When a HINGEJOINT command is qualified by a condition label, it

means that the command is active when the condition is true and inac-
tive when it is false,

EXAMPLES

HINGEJOINT: Revlntl #G1 #G2 POINT®#R1)

HINGEJOINT: HIJ16 #G23 #G24 POINT(1.3,4.2,0.0,GLO)
HINGEJOINT: Hinge_Joint4 #C1G2 #C1G3 VECTOR(IAGLO) ?Cl1

Define a Universal Joint via Constraints

Two gridpoints may be constrained together to act as a universal joint. Each gridpoint by it-
self has six degrees of freedom for a total of twelve. A UNIJOINT command imposes four
constraints which remove four degrees of freedom from the twelve to give a net total of
eight independent degrees of freedom at the joint.

The four constraints defined by the command are given a collective name so that they may
be referenced in other commands.

UNIJOINT, UNIJNT, UJOINT, UJNT, UNIV, UNI
[UNIJOINT: constraint name, grida#, grido#, OPTION for axis orient. spec. ?Cj |

constraint name alphanumeric name for the constraints defined by the unijoint
command. (Note: two unijoints may not have the same
name.)

grida#, gridb# identifiers of gridpoints to be joined by a universal

joint (#Gj or #CiG;j). Note: jointpoints cannot be used in this
command. Also note: the two gridpoints must be in the same
physical location.

OPTION for axis orientation specification - POINTS or VECTORS.

Note: For a conventiona! universal joint, the two axes specified should
be normal to each other.

Note: The first axis specified is attached to grida#, the second to
gridb#.

72 Constraints

POINTS(axis point or coords, axis point or coords) - Orientation of the two axes
is given by the specification of two points. The axis vectors
being defined extend from the gridpoint to the axis points.

axis point or coords - gives the identifier of a reference point (#Rj or
#CiRj) or a grid point (#G;j or #CiGj). An alternate form of
the point specification is to give the coordinates
(x,y,z,axesname). The initial position of the hinge axis is
defined as the line joining the grid point to which the joint is
attached, with this point.

VECTORS(axis vect ID, axis vect.ID) - Orientation of the two axes of the univer-
sal joint is given by two vectors.

Vect. I.D. for Axis - gives hinge axis on gridpoint may be a reference
vector or a vector from a unit triad (RA1, I*axesname,
Jhaxesname, K*axesname). Vector gives the initial orienta-
tion of the hinge axis.

Cj optional condition label (Cj or CLj, j is an integer from 1 to
99).
When a UNIJOINT command is qualified by a condition label, it means

that the command is active when the condition is true and inactive when
it is false.

EXAMPLES

UNIJOINT: Uj3 #G1 #G2 POINTS(16.3,14.2,0.0,GLO#G12)
UNIJOINT: Uni_Joint #G56 #G57 VECTORS(KAJSys, I*JSys)
UNIJOINT: Ul #C16 #C17 POINTSH#G1,#G2)

Define a Balljoint via Constraints

Two gridpoints may be constrained together to act as a ball joint. Each gridpoint by itself
has six degrees of freedom for a total of twelve. A BALLJOINT command imposes three
constraints which remove three degrees of freedom from the twelve to give a net total of
nine independent degrees of freedom at the joint.

The three constraints defined by the command are given a collective name so that they may
be referenced in other commands.

[BALLJOINT: constraint name, grid a#, grid b# ? Cj

constraint name alphanumeric name for the constraints defined by the
BALLJOINT command.(Note: two balljoints may not have
the same name.)

grid a#, grid b# identifiers of the two grid points to be balljointed together.

Note: jointpoints cannot be used in this command. Also note: the two
gridpoints must be in the same physical location.

Cj optional condition label (Cj or CLj, j is an integer from I to
99).

Joints Implemented by Constraints 73

When a BALLJOINT command is qualified by a condition label, it means
that the command is active when the condition is true and inactive when

it is false.

EXAMPLES

BALLJOINT: BallJointl #G1 #G2
BALLJOINT: Bj3 #G5,#G6

BALLJOINT: B7 #CRod'Gl #C'Mount'G2

Define a Cylindrical Joint Linking Two Gridpoints via Constraints

Two gridpoints may be constrained together to operate as a cylindrical joint in which one
gridpoint is free to translate along and rotate about a specified axis which is fixed relative to

another gridpoint.
CYLJOINT, CYLJNT, CJOINT, CINT

[CYLJOINT: constraint name, grida#, gridb#, OPTION for axis orient. spec. ?Cj |

constraint name alphanumeric name for the constraints defined by the
CYLJOINT command. Note: the same constraint name can-
not be used for two CYLJOINTS.

grida#, gridb# identifiers of gridpoints to be joined by a cylindrical joint
(#G;j or #CiGj). Note: that jointpoints cannot be used in this
command.

NOTE: The axis of the cylindrical joint is defined by the line joining the two points. If the points are coincident
(that is, they occupy the same physical position in space) then it is necessary to use the following OPTION
for specifying the initial axis orientation. If the two gridpoints are at separate locations then the use of this
option will result in an error. :

OPTION for initial axis orientation specification - POINT or VECTOR

POINT (axis point or coords>)- Axis orientation is given by the specification of a
point. The axis vector being defined extends from either
gridpoint (since they must be coincident for this option to be
used) to the axis point.

axis point or coords - gives the identifier of a reference point(#R] or #CiRj)
or a grid point (#Gj or#CiGj), or the coordinates of a point
(x,y,z,axesname). The initial position of theaxis is defined
as the line joining grida# or gridb# with this point. Initial rel-
ative rotation angle is zero.

VECTOR (vectID for axis) - Initial axis orientation is given by a vector.

Vect. I.D. for Axis - may be a reference vector or a vector from a unit triad
(RN, I"axesname, JAaxesname, KAaxesname). Vector gives
the initial orientation of the hinge axis. Initial rotation angle
of the joint is zero.

Cj optional condition label (Cj or CLj, j is an integer from 1 to
99).

74 Constraints

When a CYLJOINT command is qualified by a condition label, it means
that the command is active when the condition is true and inactive when
it is false.

EXAMPLES

CYLJOINT: Cyl_Jointl #G1 #G2
CYLJOINT: CJ3 #GS5 #G6 VECTOR(RA6) $ #G5 and #G6 are initially coincident
CYLJOINT: Cyljoint #C5G1, #C5G2 POINT(3.5,6.7,9.0,GLO) $ so are #C5G1

and 2

Define a Translational Joint Linking Two Gridpoints via Constraints

Two gridpoints may be constrained together to act as a translational joint in which one
gridpoint is free to translate along a specified axis which is fixed relative to another grid-
point. Both gridpoints are fixed in their relative orientations and may not rotate relative to
each other.

TRANSJOINT, TRANSJNT, TJOINT, TINT

[TRANSJOINT: constrnt. name, grida#, gridb#, OPTION for axis orient. spec. 7Cj |

constraint name alphanumeric name for the constraints defined by the
TRANSJOINT command. Note: the same name may not be
used for two TRANSJOINTS.

grida#, gridb# identifiers of gridpoints to be joined by a translational joint
(#G;j or #CiGj). Note: that jointpoints cannot be used in this
command.

NOTE: The axis of the translational joint is defined by the line joining the two points. If the points are coinci-
dent (that is, they occupy the same physical position in space) then it is necessary to use the following
OPTION for specifying the initial axis orientation. If the two points are separated in space then use of this
option will result in an error.

OPTION for initial axis orientation specification - POINT or VECTOR

POINT{axis point or coords) - Axis orientation is given by the specification of a
point. The axis vector being defined extends from either
gridpoint (since they must be coincident for this option to be
used) to the axis point.

axis point or coords - gives the identifier of a reference point(#Rj or #CiRj)
or a grid point (#Gj or#CiGj), or the coordinates of a point
(x,y,z,axesname). The initial position of the axis is defined
as the line joining grida# or gridb# with this point. Inital rel-
ative rotation angle is zero.

VECTOR(vectID for axis) - Initial axis orientation is given by a vector.

Vect. I.D. for Axis - may be a reference vector or a vector from a unit triad
(RM, I"axesname, Jhaxesname, KAaxesname). Vector gives
the initial orientation of the hinge axis. Initial rotation angle
of the joint is zero.

Joints Implemented by Constraints 75

G optional condition label (Cj or CLj, j is an integer from 1 to
99).
When a TRANSJOINT command is qualified by a condition label, it

means that the command is active when the condition is true and inac-
tive when it is false.

EXAMPLES

TRANSJOINT: Trans_Jointl #G1 #G2

TRANSJOINT: CJ3 #GS5 #G6 VECTOR(R”M6)

$ #GS5 and #G6 are initially coincident
TRANSJOINT: Transjoint #C5G1, #C5G2 POINT(3.5,6.7,9.0,GLO)

$ so are #C5G1 and 2

MISCELLANEOUS SPECIAL CONSTRAINTS

Other special constraints include the ability to fix a gridpoint at a particular location in
space, or to clamp two gridpoints together. Also included is a constant distance link con-
straint.

Fix a Grid Point

The FIX command fixes a gridpoint at its present location and orientation in the global
system. The command has the form

FIX
[FIX: constraint name, grid # ? Cj |
constraint name alphanumeric name for the constraints defined by the FIX
command. (Note: two FIX commands may not have the
same name.)
grid# identifier of the grid point to be fixed (#Gj or #CiG;j)
qj optional condition label (Cj or CLj, j is an integer from 1 to
99).

When a FIX command is qualified by a condition label, it means that the
command is active when the condition is true and inactive when it is
false.

EXAMPLES
FIX: Fix_Gl1 #Gl
FIX: F7 #G7 ?C3

76 Constraints

Clamp Two Grid Points Together Rigidly

Usually there is no need to clamp two gridpoints together, since many members or other el-
ements may be connected to a single gridpoint. One use for this command, however, is to
let two gridpoints come together or separate during a transient analysis, since the command
may be turned on or off by a condition.

7 CLAMP
[CLAMP: constraint name, grid a #, grid b# ? Cj]
constraint name alphanumeric name for the constraints defined the CLAMP
command. (Note: two CLAMP commands may not have the
same name.)
grid a#, grid b# identifiers of the two grid points to be clamped together.
Cj optional condition label (Cj or CLj, j is an integer from 1 to
99).

When a CLAMP command is qualified by a condition label, it means that
the command is active when the condition is true and inactive when it is
false.

EXAMPLES
CLAMP: Clamp_l1&2 #G1 #G2
CLAMP: clp8 #G8 #G9

Define a Constant Distance Link Between Two Gridpoints

A massless link may be defined between two gridpoints such that the distance between
them is constrained to be constant. The relative orientation of the two points is NOT con-
strained.

DISTLINK, DISLINK, DLINK, NOMASSLINK

[DISTLINK: constraint name, grida#, gridb# ?Cj |

constraint name alphanumeric name for the constraints defined by the
DISTLINK command. Note: the same constraint name can-
not be used for two DISTLINKS.

grida#, gridb# identifiers of gridpoints to be joined by a massless link (#G;j
or #CiGj). Note: that jointpoints cannot be used in this
command.

G optional condition label

When a DISTLINK command is qualified by a condition label, it means
that the command is active when the condition is true and inactive when
it is false.

Fix, Clamp, Distlink, Rotlock, and Geared Connections 77

EXAMPLES
DISTLINK: Linkl #G67 #G68
DISTLINK: Link2 #GS5 #G6

GENERALIZED CONSTRAINTS

All the constraint comands described in the previous section have been programmed into
LATDYN and may simply be invoked by the user. Additional constraint capabilities also
exist to allow the advanced user to input and apply customized constraint equations.

Define a Single Degree of Freedom Constraint

This command allows the user to constrain a single degree of freedom of a specified grid-
point (or the hinge motion of a hingepoint).

SDFC, SPC
[SDFC: constraint name, grid #, d.o.f. code, ths _ ? Cj |
constraint name alphanumeric name for the constraint defined by the com-
mand. (Note: two SDFC commands may not have the same
name.)
grid# grid point identifier (#Gj or #CiGj or #GjJk or #CiGjJk,
where i = component number, j = gridpoint number, k= joint
number).
d.o.f. code identifies the degree of freedom to be constrained

X, Y, or Z - gridpoint translation
WX, WY, or WZ - gridpoint rotation
H - hinge rotation (grid# must be a hingepoint)

rhs right hand side. (May be a real number, a Q-variableor a T-
variable). Gives the acceleration of the specified degree of
freedom.

Cj optional condition label (Cj or CLj, j is an integer from 1 to
99).

When a SDFC command is qualified by a condition label, it means that
the command is active when the condition is true and inactive when it is
false.

Note: Constraints in LATDYN are applied to acceleration. For example,
a single degree of freedom constraint, x = 0 should be differentiated
twice by the user before being applied. In this particular case nothing

changes since the equation is simply applied as, x=0
but the case of a non zero rhs gives the acceleration of the degree of

78 Constraints

freedom. For example, x=Q1
sets the acceleration of the specified degree of freedom "x".

EXAMPLES

SDFC: X_limit #G4 X 0.0
SDFC: No_Rot_ WX #G7 WX 0
SDFC: No_Rot WY #G7 WY 0
SDFC: No_Rot ' WZ #G7 WZ 0

Define a Multi-Degree of Freedom Constraint

This command allows the user to input any constraint equation which he or she has de-
rived. By allowing Q-variables as coefficients, it also includes the capability for any non-
linear constraint which is an arbitrary function of the model state vector.

It is important for the user to understand that constraints in LATDYN are applied to acceler-
ation. Thus all coefficients must be derived on this basis (see notes in SDFC command).

MDFC,MPC
MDFC: constraint name, grid #, d.o.f.code, coefficient, &
grid #, d.o.f. code, coefficient, &
... grid #, d.o.f. code, coefficient, rhs ? Cj
Constraint name alphanumeric name for the constraint defined by this com-
mand.(Note: no two MDFC commands may have the same
name.)
grid #, d.of. code, coefficient - defines a term in the constraint relation
grid# grid point identifier (#Gj or #CiGj or #GjJk or #CiGjJk,

where 1 = component number, j = gridpoint number, k= off-
set point number).

d.o.f. code identifies the degree of freedom to be constrained
X, Y,orZ - gridpoint translation
WX, WY, or WZ - gridpoint rotation
H - hinge rotation (grid# must be a hingepoint)

Coefficient may be a real number, a Q-variable or a T-variable)
rhs right hand side (may be a real number, a Q-variable, or a T-
variable)
Cj optional condition label (Cj or CLjj, j is an integer from 1 to
99).

When a MDFC command is qualified by a condition label, it means that
the command is active when the condition is true and inactive when it is
false.

SDFC, MDFC 79

EXAMPLES
MDEFC: Special _1 #G5,X,1.0 #G5,Y,1.0 #G5,Z,1.0 #G6,X,Q1 &
#G6,Y,Q2 #G6,2,Q3 0.0

81

9. DATA TABLES

Data tables in LATDYN serve multiple functions. For example, they may be used for set-
ting up a non-linear spring, or to define a motion trajectory of a gridpoint, or to specify an
applied load. The way in which data tables have been made multi-purpose is through their
links with user defined Q- and T-variables (and in higher dimensional tables with Q- and T-
vectors).

A T-variable is a special type of LATDYN variable which is automatically created when a
table is defined and which represents the value of the dependent variable at the present
timestep. A Q-variable is a general purpose user variable defined in a SET command.

Before using data tables it is helpful to know how to create Q-variables, and to understand
in what order various operations are performed to integrate the dynamic equations of mo-
tion. This sequence is shown in Chapter 13, Figures 13.1 and 13.2.

TABLE INTERPOLATION

When defining a one-dimensional data table, the user gives a list of (x,y) pairs of values. If

we term "x" the independent variable and "y" the dependent variable, then the x-values do
not have to be equally spaced but they do have to be monotonically increasing (or decreas-

ing).

In using tables it is often necessary to interpolate between the data points. That is, it is de-
sireable for a user to be able to treat the data in the table as though it were a continuous
function instead of a set of discrete values. LATDYN has two general ways to do this. A
Q-variable (or TIME) may be used to represent the independent variable, and either,

o a T-variable may be used to represent the dependent variable, or,
o another Q-variable may be used to represent the dependent variable.

The first way is the simplest, but it has some limitations. When a table is created by the
user (in a TABLE1 or TABLE2 command), LATDYN it automatically creates a "T-vari-
able" with the same ID number as was given to the table. When this T-variable is used as a
parameter in other commands (such as SDFC, APPFORCE, APPTORQUE,
ROTACTUATOR, or LINACTUATOR), then LATDYN automatically interpolates the
table each time it executes the command, using the interpolated value of the table for the T-
variable. Thus, the T-variable may be viewed as a continuous function which is derived
from discrete data points given in the table.

The T-variable corresponds to the dependent variable (y-values) given in the table.
LATDYN knows how to interpolate the table because the user also specifies a spline inter-
polation function and a parameter to associate with the independent variable (the x-values),
to interpolate the table. This parameter may be TIME or a Q-variable.

PAG PRECEDING P LANK N
E‘QD‘\’NTENWONALLY -~ G PAGE BLANK NOT FILMED

82 Data Tables

For example, suppose that data for a non-linear spring force is given in a TABLE1 com-
mand (say ID=T3). The force (y-values) depends on the distance between two gridpoints
(x-values). A Q-variable (say Q6) is defined in a SET command as the distance between the
two gridpoints and is also given as the independent variable in the TABLE1 command.

The non-linear spring data can then be used as though it were a continuous function repre-
sented by the table variable "T3". For example, a non-linear spring may be defined in a
LINACTUATOR command with the force represented by "T3".

There is one complicating factor to this flexible scheme of using tables. If calculations are
not done in the right order you won't get the right answer! To illustrate this point let's look
again at the example given above. At each timestep in this example it is necessary first that
LATDYN computes the gridpoint positions corresponding to the current timestep, then we
want to use these positions to compute "Q6" (the distance between the required gridpoints),
then to use this value to interpolate in the table to get a current value of the spring force
"T3", and finally to use this value of the spring force to solve Newton's Law for this
timestep so as to get the acceleration state vector for the model.

If the explicit integrator were being used, then with reference to figure 13.1, it can be seen
that "Q6" should be computed in user subroutines PRECALC and BGNSTEDP. If the im-
plicit integrator were being used, then with reference to figure 13.2, it can be seen that
"Q6" should be computed in user subroutines PRECALC and INLOOP.

In general T-variables are the easy way to use the interpolated value from a data table in the
LINACTUATOR, ROTACTUATOR, SDFC, MDFC, APPFORCE, and APPTORQUE
commands, because they will automatically be evaluated each time LATDYN executes that
command. Thus, the only thing that the user has to worry about is whether the correct
value of the independent variable is current when the interpolation is performed. If the in-
dependent variable is TIME itself then it is always correct. When the independent variable
is a Q-variable which is computed in subroutine BGNSTEP (for an explicit integrator) or in
subroutine INLOOP (for an implicit integrator), then in general it will be correct.

For other purposes, T-variables may also be computed at a specific sequence point in both
integrators as shown in figures 13.1 and 13.2, for those tables where the
AUTOCALC(ON) option is specified. The reason for this option is the great variety of
ways in which T-variables and Q-variables may be used together in calculations. For ex-
ample, a T-variable may be used in the calculation of a Q-variable which may be used as the
independent variable in the calculation of another T-variable. In cases like this, the order in
which calculations are performed become very important.

The fully controllable way to ensure that calculations are performed in the correct order is to
use Q-variables to represent both dependent and independent variables. Special "operators”
are provided in LATDYN to enable a user to perform table interpolations. Since operators
are called in the user's given sequence and may be mixed with Q-variable calculations, this
makes it easy for a user to control the precise point at which interpolations are performed
and it is even possible to perform iterative interpolations at a timestep. Operators to perform
interpolations include TCALC1, TCALC2, TVCALCI, and TVCALC2.

Table Variables andTable Vectors 83

Define a Table (which is a Function of a Single Independent
Variable)

Data tables in LATDYN come with special facilities for interpolation, and for using interpo-
lated values as T-variables or Q-variables.

When creating a data table it is necessary to specify the parameter to be used to give the
value of the independent degree of freedom for carrying out these interpolations. The inter-
polated value is obtained by fitting a spline under tension to the curve specified as data
points given by the user in the TABLE1 command.

Results of the interpolation are placed in a T-variable. A T-variable is a special type of
LATDYN variable which is automatically created when a table is defined. The LD. of the
T-variable is the same as that of the table itself, that is, T1 for the table with an I.D. of "1".

TABLE1, TAB1, T-VAR1, TVAR1

TABLE1: Table I.D., ind.var., Spline Tension, OPTION for automatic evaluation,
filename or set of data values (as follows)

x1, y1 &

X2, y2 &

x3, y3 &

x4, y4 &

etc

TableI.D. Tk where k is an integer. Note: two tables may not have the
same I.D. number

ind.var. TIME or Q-variable or another T-variable. Defines how the
data points in the following table are to be interpreted by the
program.
TIME - All values of the independent variable in the follow-
ing table are relative to the starting time of the analysis run as
specified in the TIMESPAN command.
QO-var - All values of the independent variable in the follow-
ing table are taken to be relative to the value of the Q-variable
specified. When the interpolation is performed, the value of
the specified Q-variable at that time is the value to be used
for the interpolation.
T-var - All values of the independent variable in the follow-
ing table are taken to be relative to the value of the T-variable
specified. When the interpolation is performed, the value of
the specified T-variable at that time is the value to be used for
the interpolation.

Spline Tension A spline under tension is used for interpolations. This pa-
rameter is a real number indicating the curviness desired. If
the value is nearly zero (e.g. .001) the resulting curve is ap-
proximately a cubic spline. If the value is large (e.g. 50) the
resulting curve is piecewise linear. If the value is exactly

84 Data Tables

zero, an exact cubic spline is produced. A standard value for
spline tension is approximately 1.

OPTION for automatic evaluation - AUTOCALC, or omitted

AUTOCALC(ON)

AUTOCALC(OFF)

Jilename or set of data values

xI, x2, x3, ...
yl, y2, y3, ...
EXAMPLES

$ D
TABLEl: T4
TABLELl: Té6
$ ID
TABLEl: T2

ind.var.

TIME
Q10

ind.var.

Q5

(default option) table will be interpolated at every timestep
immediately after subroutine BGNSTEP (explicit integra-
tion) or after subroutine INLOOP (implicit integration) (see
figures 13.1 and 13.2).

The results of the interpolation will be placed in the T-variable corre-
sponding to this table.

Note: this process may be inefficient because multiple evaluations at a
timestep may be performed because when a T-variable is used in one of
the LINACTUATOR, ROTACTUATOR, SDFC, MDFC, APPFORCE, and
APPTORQUE commands, then the table is always automatically inter-
polated when it is needed.

Note: the order of evaluation of table variables is in the numeric se-
quence of their 1.D. numbers.

A T-variable is a special type of LATDYN variable which represents the
interpolated value of the dependent variable at the present timestep.
The interpolated value is obtained by fitting a spline under tension, to
the curve specified by the data points given in this command.

automatic interpolations will be performed.only when a T-
variable is used in a LINACTUATOR, ROTACTUATOR,
SDFC, MDFC, APPFORCE, or APPTORQUE command.

The way in which a user can control the interpolation of table variables is
described more fully in the section on user programming using the
TCALC1 operator described below.

data may be given on a separate file or as part of this com-
mand.

If data is given on a separate file then the filename is given here. Data
on the file must contain an initial record giving the number of data sets.

Data sets in the commmand or on a file may be separated by a comma or
spaces. Data within the command must contain the "&" continuation
character at the end of each line. Data within a file needs no special
characters.

data for independent variable (real numbers)
data for dependent variable (real numbers)

tension auto. eval. data file

.8 AUTOCALC(OFF) TEST7
1.0 AUTOCALC(ON) React. DAT

tension auto. eval. data

1.2 AUTOCALC(ON)

bbbl abe
O O AN
R

Table Variables andTable Vectors 85

Define a Data Table (which is a Function of Two Independent Vari-

ables)

The only difference between 1-D and 2-D tables is that two independent variables are re-
quired to define the dependent variable. The command has the form,

TABLE2, TAB2, T-VAR2, TVAR2

TABLE2: Table I.D., ind.var1, ind.var2, Spline Tension, OPTION for automatic
evaluation, filename or set of data values (as follows)

x1, y1, z1
X2, y2, 22
x3, ¥3, z3
x4, y4, z4
etc

NOTE: The TABLE2 Command is not presently implemented in the
preprocessor but is implemented in the computational core.

Table Parameter 1.D.

ind.varl, ind.var2

Spline Tension

Tk where k is an integer. Note: two tables may not have the
same [.D. number

TIME or Q-variable or another T-variable. Defines how the
data points in the following table are to be interpreted by the
program.

TIME - All values of the independent variable in the follow-
ing table are relative to the starting time of the analysis run as
specified in the TIMESPAN command.

Q-var - All values of the independent variable in the follow-
ing table are taken to be relative to the value of the Q-variable
specified. When the interpolation is performed, the value of
the specified Q-variable at that time is the value to be used
for the interpolation.

T-var - All values of the independent variable in the follow-
ing table are taken to be relative to the value of the T-variable
specified. When the interpolation is performed, the value of
the specified T-variable at that time is the value to be used for
the interpolation.

A spline under tension is used for interpolations. This pa-
rameter is a real number indicating the curviness desired. If
the value is nearly zero (e.g. .001) the resulting curve is ap-
proximately a cubic spline. If the value is large (e.g. 50) the
resulting curve is piecewise linear. If the value is exactly
zero, an exact cubic spline is produced. A standard value for
spline tension is approximately 1.A spline under tension is
used for interpolations.

OPTION for automatic evaluation - AUTOCALC, or omitted

AUTOCALC(ON)

(default option) table will be interpolated at every timestep
immediately after subroutine BGNSTEP (explicit integra-

86 Data Tables

AUTOCALC(OFF)

filename or set of data values

xI, x2, x3,
yl, y2, y3,
zl, 22, 23, ...

EXAMPLES

$ iD
TABLE2: T4
TABLE2: T6
$ D
TABLE2: T2

ind.var.

TIME
Q10

ind.var.

Q5

tion) or after subroutine INLOOP (implicit integration) (see
figure).

The results of the interpolation will be placed in the T-variable corre-
sponding to this table.

Note: this process may be inefficient because multiple evaluations at a
timestep may be performed because when a T-variable is used in one of
the LINACTUATOR, ROTACTUATOR, SDFC, MDFC, APPFORCE, or
APPTORQUE commands, then the table is always automatically inter-
polated when it is needed.

Note: the order of evaluation of table variables is in the numeric se-
quence of their [.D. numbers.

A T-variable is a special type of LATDYN variable which represents the
interpolated value of the dependent variable at the present timestep.
The interpolated value is obtained by fitting a spline under tension, to
the curve specified by the data points given in this command.

automatic interpolations will be performed.only when a T-
variable is used in a LINACTUATOR, ROTACTUATOR,
SDFC, MDFC, APPFORCE, or APPTORQUE command.

The way in which a user can control the interpolation of table variables is
described more fully in the section on user programming using the
TCALC2 operator described below.

data may be given on a separate file or as part of this com-
mand.

If data is given on a separate file then the filename is given here. Data
on the file must contain an initial record giving the number of data sets.

Data sets in the commmand or on a file may be separated by a comma or
spaces. Data within the command must contain the "&" continuation
character at the end of each line. Data within a file needs no special
characters.

data for first independent variable (real numbers)
data for second independent variable (real numbers)
data for dependent variable (real numbers)

tension auto. eval. data file

.8 AUTOCALC(OFF) TEST7
1.0 AUTOCALC(ON) React. DAT

tension auto. eval. data
1.2 AUTOCALC(ON) 0.0 3.6 10.3 &
0.5 4.5 159 &
1.0 49 258 &
1.3 5.1 304 &
1.5 5.05 35.5

Table Variables andTable Vectors 87

Interpolate and Differentiate a Data Table

The fully controllable way to use the interpolated value from a data table in one of the fol-
lowing commands by using Q-variables.instead of T-variables (Q-variables are described in
Chapter 13).

Whereas T-variables are the easy way to use the interpolated value from a data table in the
LINSPRING, LINDAMPER, ROTSPRING, ROTDAMPER, SDFC, MDFC,
APPFORCE, and APPTORQUE commands, the more flexible way is to use Q-variables in
conjunction with a TCALC operator.

When a TCALC operator is inserted in a user subroutine by an OP command and executed
during a LATDYN run, it forces immediate interpolation of the specified table, and puts the
interpolated value of the dependent variable into a Q-variable. A side benefit of using the
TCALC operators is that it is also possible to extract derivatives, which are also placed in
Q-variables. All these variables are then easily available for use both in the above com-
mands, and in subsequent user program statements (SET and OP commands).

The TCALC operator for a Table Variable which is a Function of One Independent Variable
is as follows,

IT_CALC1(itable, Qi, Qj, Qk) | OPERATOR to Interpolate and

Differentiate a Data Table which is a
Function of One Independent Variable.

itable Table I.D. for which user has specified data in a TABLE1 command
(integer value)
] interpolated value of the table
0j, Ok computed values of first and second differentials respectively
[TCALC2(itable, Qi, Qj, Qk, Ql, Qm, Qn) | |OPERATOR tolnterpolate and
Differentiate a Data Table which is a
Function of Two Independent
Variables.
itable Table Variable L.D. for which user has specified data in a TABLEVARI1
command (integer value)
9] interpolated value of the table
0j, Ok computed values of first differentials with respect to the two independent
variables
ol Om computed values of second differentials with respect to the two indepen-
dent variables
On computed value of the cross differential with respect to the two indepen-

dent variables

88 Data Tables

TABLE VECTORS

T-vectors are related to vector tables in just the same way that T-variables are related to or-

dinary data tables. Vector tables are defined as shown below.

NOTE: Table Vectors are not presently implemented in the preprocessor
but are implemented in the computational core.

Define a Vector Table (which is a function of a Single Independent

Variable)

TABLEVEC1, TABVEC1, TVECTOR, TVEC1

TABLEVECT: vector table I.D., ind.var., Spline Tension, OPTION for automatic
calculation, OPTION for table spec.

vector table I.D.
ind.var.

Spline Tension

Table vector identifier k, where k is an integer

TIME or Q-variable or another T-variable. Defines how the
data points in the following table are to be interpreted by the
program.

TIME - All values of the independent variable in the follow-
ing table are relative to the starting time of the analysis run as
specified in the TIMESPAN command.

Q-var - All values of the independent variable in the follow-
ing table are taken to be relative to the value of the Q-variable
specified. When the interpolation is performed, the value of
the specified Q-variable at that time is the value to be used
for the interpolation.

T-var - All values of the independent variable in the follow-
ing table are taken to be relative to the value of the T-variable
specified. When the interpolation is performed, the value of
the specified T-variable at that time is the value to be used for
the interpolation.

A spline under tension is used for interpolations. This pa-
rameter is a real number indicating the curviness desired. If
the value is nearly zero (e.g. .001) the resulting curve is ap-
proximately a cubic spline. If the value is large (e.g. 50) the
resulting curve is piecewise linear. If the value is exactly
zero, an exact cubic spline is produced. A standard value for
spline tension is approximately 1.A spline under tension is
used for interpolations.

OPTION for automatic evaluation - AUTOCALC, or omitted

AUTOCALC(ON)

(default option) table will be interpolated at every timestep
immediately after subroutine BGNSTEP (explicit integra-

Table Variables andTable Vectors 89

tion) or after subroutine INLOOP (implicit integration) (see
figure).

The results of the interpolation will be placed in the T-vector correspond-
ing to this table.

Note: this process may be inefficient because multiple evaluations at a
timestep may be performed because when a T-vector is used in one of
the APPFORCE, or APPTORQUE commands, then the table is always
automatically interpolated when it is needed.

Note: the order of evaluation of T-vectors is in the numeric sequence of
their I.D. numbers.

A T-vector is a special type of LATDYN variable which represents the in-
terpolated value of the dependent variables at the present timestep.
The interpolated value is obtained by fitting a spline under tension, to
the curve specified by the data points given in this command.

AUTOCALC(OFF) automatic interpolations will be performed.only when a T-
vector is used in an APPFORCE, or APPTORQUE com-
mand.

The way in which a user can control the interpolation of table vectors is

described more fully in the section on user programming using the
TVCALC1 operator described below.

OPTION for table specification - RCOORD or SCOORD
RCOORD(t1, x1,yl, 21, 12, x2, ¥2, Z2, 13, x3, ¥3, 23, etc ----- Axesname for
def)

- coordinates of vector will be given in rectangular coordi-
nates in a specified coordinate system.

t1, 12,3 ... values of independent variable

xi,yi,zi ... coordinates of dependent vector
Axesname for def. - refers to coordinate system defined in AXES com-
mand

SCOORD (t1, Magl, Azl, El, 12, Mag2, Az2, Ei2, t3, Mag3, Az3, EI3 etc-----
Axesname for def) - coordinates of vector will be given in
spherical coordinates in a specified coordinate system.

11, 12,3 ... values of independent variable
Magi,Azi,Eli - coordinates of dependent vector

Axesname for def. - refers to coordinate system defined in AXES com-
mand

Interpolate and Differentiate a Vector Table

The TVCALC operators for vector tables described in this section are analogous to the
TCALC operators described earlier for ordinary tables. The TCALC operator for a Table
Vector which is a Function of One Independent Variable is as follows,

80 Data Tables

|TVCALC1(itable, QAi, QA él\k)] OPERATOR tolnterpolate and
Differentiate a Vector Table which is a
Function of One Independent Variable.
itable vector table L.D. for which user has specified data in a TABLEVECT1
command

ON, %, O computed values of the table and the first and second differentials respec-
tively

91

10. APPLIED LOADS AND CONTROLS

One of LATDYN's strengths is its facility for allowing the user to program a wide variety
of loads. These loads may range from a simple constant force or torque to a complete con-
trol system for a spacecraft. This capability has been provided through a rich variety of
functions and operators which allow the user access to any of the dynamic states of the
model. By using Q-variables and Q-vectors, calculations may be performed on
"measurements” of dynamic states and fed-back as control forces. That is (in controls ter-
minology) Q-vectors and Q-variables act as sensors and state estimators.

Applied loads fall into three general groups: (1) Externally applied forces or torques, where
the reaction of the applied force or torque is grounded to an entity outside the system, (2)
Actuators, where the action and reaction are self contained within the system, and (3) Force
fields, such as gravity.

APPLIED FORCES AND TORQUES

Externally applied forces in LATDYN have magnitude and direction. Forces may be con-
stant or may vary with time in a prescribed way, or may be the result of feedback from a
control system.

Externally applied torques have magnitude and are applied about a torque axis vector. Both
the magnitude and direction of the torque may be constant or may vary with time in a pre-
scribed way, or may be the result of feedback from a control system.

Define a Force and Apply it to a Grid Point or Set of Grid Points

APPFORCE, AFORCE

APPFORCE: Forcename, OPTION fof force spec., OPTION for duration, list of
grid points where force is to be applied ? Cj

Forcename alphanumeric identifier for the force which is being defined
by this command. (Note: two APPFORCE commands may
not have the same name.)

OPTION for force specification - MDV, MSDV, or MVDV
MDV(Vector 1.D.) - magnitude & direction given by a simple vector.
Vector I.D. RAk, TAk, Q/k, I*axesname, JAaxesname, or KAaxesname

MSDV(Scalar Mag., Vector Dir.) - magnitude is given by a scalar. direction is
given by a vector.

Scaler Mag. real number, Q-Variable or T-Variable

g2 Applied Loads and Controls

Vector Dir. RAk, TAk, QMk, I*axesname, JAaxesname, or KAaxesname

MVDYV (Vector Mag., Vector Dir.) - magnitude is the magnitude of the first vec-
tor, direction is the direction of the second vector.

OPTION for force duration - TIME or omitted
TIME(1l, 12) - Start time and stop time for force application

tl,12 start time, stop time
gridpoints list of grid points where force is to be applied.
G optional condition label (Cj or CLj, j is an integer from 1 to
99)

When an APPFORCE command is qualified by a condition label, it
means that the command is active when the condition is true and inac-
tive when it is false.

EXAMPLES

APPFORCE: Axial_Thruster MDV(RA1) ” #G6

APPFORCE: F1 MSDV(5.67,R*6) TIME(0.0,2.5) #G1,#G2#G3#G4 7C1
APPFORCE: F2 MVDV(Q"4,RM) . #C5G2

Define a Torque and Apply it to a Grid Point or Set of Grid Points

APPTORQUE, APPTORQ, ATORQUE, ATORQ

APPTORQUE: Torque Name, OPTION for Torque Spec, OPTION for torque du-
ration, list of grid points where torque is to be applied ? Cj

Torquename alphanumeric identifier for the torque which is being defined
by this command. (Note: two APPTORQUE commands may
not have the same name.)

OPTION for Torque specification - MDV, MSDV, or MVDV

MDV(Vector I.D.) magnitude and direction given by a single vector. Direction
of vector is the torque axis. Magnitude is the magnitude of
the torque.

Vector 1.D. RAk, TAk, Q/k, [haxesname, JAaxesname, or KAaxesname

MSDV(Scalar Mag., Vector Dir.) - magnitude is given by a scalar, direction is
given by a vector.

Scalar Mag. Real number, Q-Variable or T-Variable
Vector Dir. RAk, Tk, Q/k, ["axesname, JAaxesname, or KAaxesname

MVDV(Vector Mag, Vector Dir) - magnitude is the magnitude of the first vector,
direction is the direction of the second vector.

OPTION for torque duration - TIME or omitted
TIME (11, 12) Start time and stop time for torque application
tl,12 start time, stop time

Forces, Torques, Actuators, and Gravity a3

gridpoints list of grid points where force is to be applied.
G optional condition label

When an APPTORQUE command is qualified by a condition label, it
means that the command is active when the condition is true and inac-
tive when it is false.

EXAMPLES

APPTORQUE: Axial_Torque MDV(RA1) ,, #G6

APPTORQUE: T1 MSDV(.67,RM6) TIME(0.0, 2.5) #G1.#G2#G3,#G4 7Cl1
APPTORQUE: T2 MVDV(QM,RM) ” #C5G2

ACTUATORS

Actuators in LATDYN always act between two points on the structural model. A lineal ac-
tuator acts in a straight line between two gridpoints. A rotational actuator acts about a hinge
axis, between a gridpoint and a hingepoint, between two gridpoints, or between two
hingepoints.

Define a Lineal Actuator

LINACTUATOR, LACTUATOR, LINACT, LACT

LINACTUATOR: Actuator name, grid a#, grid b#, force magnitude, OPTION for
duration ? Gj

actuator name alphanumeric actuator name. (Note: two LINACTUATOR
commands may not have the same name.)
grid a# grid point identifier for one end of actuator (#Gj or #CiGj or

#GjJk or #CiGjJk, where i = component number, j = grid-
point number, k= jointpoint number).

grid bt grid point identifier for other end of actuator (#Gj or #CiGj
or #GjJk or #CiGjJk, where i = component number, j =
gridpoint number, k= offset point number).

force magnitude may be a real number, a Q-variable, or a T-variable

Note: A positive value of actuator force means that the grid points are
being pushed apart.

OPTION for force duration TIME or omitted
TIME(tl, 12) Start time and stop time for force application
tl,t2 start time, stop time
G optional condition label

94 Applied Loads and Controls

When a LINACTUATOR command is qualified by a condition label, it
means that the command is active when the condition is true and inac-

tive when it is false.

EXAMPLES
LINACTUATOR: Piston_1 #Gl #G2 |,
LINACTUATOR: Actuator2 #G6 #G7 T1 TIME(0.0,1.5) ?C3

Define a Rotational Actuator

ROTACTUATOR, RACTUATOR, ROTACT, RACT

ROTACTUATOR: actuator name, OPTION for connection of ends, Mag, OP TION
for duration ? Cj

actuator name alphanumeric name for rotational actuator. (Note: two
ROTACTUATOR commands may not have the same name.)

OPTION for connection of ends - UX, CX, BX, or GX

UX(hingepoint #) uniaxial connection for connection between a grid point and
a hingepoint attached to it.

CX(hingepoint a#, hingepoint b#) - co-axial connection for connection between
two coaxial hinge degrees of freedom attached to the same
grid point.

BX(hingepoint a#, hingepoint b#) - bi-axial connection for connection between
any two hinge degrees of freedom attached to the same grid-
point, or between two different gridpoints on the same rigid
body.

GX(hinge constraint name) - general connection for a rotational damper about a
hinge axis between two gridpoints, where the hinge is de-
fined by constraints. The hinge constraint name is defined by
a HINGEJOINT command.

Magnitude magnitude of the torque applied by the actuator. May be a
real number or a T-variable or a Q-variable.

Note: A positive value of the actuator torque means that the torque on
the second connection point is positive (clockwise) about the hinge
axis. (Obviously the torque on the first connection point is then nega-
tive).

OPTION for torque duration - TIME or omitted
TIME(:1,12) - start time and stop time for torque application
t1,12 start time, stop time

G optional condition label (Cj or CLj, j is an integer from 1 to
99)

When an ROTACTUATOR command is qualified by a condition label, it
means that the command is active when the conditicn is true and inac-
tive when it is false.

C-2

Forces, Torques, Actuators, and Gravity 95

EXAMPLES

ROTACTUATOR: Torq Wheel 1 UX#GIHI) ,, Q4
ROTACTUATOR: Torq Wheel 2 CX#GIHI,#G1H2) ,, W4
ROTACTUATOR: Rot_Act2 GX(Hinge Joint3) TI1 TIME(0.0, 1.5) ?C3

Gravity Force Field

Two versions of a gravity force field have been built into LATDYN. One version gives a
constant gravity field and is intended for use in modeling terrestrial structures. The other
gives a gravity field which varies with distance from the center of the earth, and is intended
for use in modeling structures in orbit.

GRAVITY, GRAV

[GRAVITY: OPTION for specifying gravity field

OPTION for specifying gravity field - CONSTANT or GRADIENT

CONSTANT (g, vector for dirn. of gravity field) - to specify a constant field
g the acceleration due to gravity

vector for dirn. of gravity field - reference vector LD. (R71, [*axesname,
JAaxesname, KAaxesname)

GRADIENT (g, x, y, z) to specify a gravity gradient field

g the acceleration due to gravity at the origin of the global
coordinate system
X,y z the location of the center of the earth in global coordinates
EXAMPLES

GRAVITY: CONSTANT(32.2, ZAGLO)
GRAVITY: GRADIENT(32.2, 0.0,0.0,-1.0E5)

97

11. INITIALIZATION OF DYNAMIC VARIABLES

INITIAL VELOCITIES

When a structure is not initially at rest, it is necessary to define these initial velocities. This
is often not a simple task because it is necessary for the dynamic states throughout the
structure to be consistant with each other. Often the easiest way to achieve consistant initial
dynamic states is to run LATDYN starting the structure from rest, and then to use the dy-
namic states derived at a certain point in the motion as the starting point for a new analysis.

To Give a Single Gridpoint an Initial Velocity

The default value for initial velocity is zero. The form of the command to give a gridpoint a
non-zero initial velocity is:

VELOCITY, VELOC, VEL

[VEL: grid#, vx, vy, vz, Wx, Wy, wz, axesname]

grid# identifies the gridpoint to which the velocity will be applied
(#G;j or #CiGj) - jointpoints are not allowed.

VX, vy, vz (x, ¥, z) components of gridpoint translational velocity in the
named axes system.

WX, wy, wz (x, y, z) components of gridpoint rotational velocity in the
named axes system.

axesname refers to a coordinate system defined by the axes command.

The translational and rotational velocity components are
given relative to this coordinate system. If this parameter is
omitted or left blank, then the GLOBAL system is assumed.

Note - for the purpose of this command the coordinate system is always
assumed to be stationary.

EXAMPLES
VEL: #G2, 3.600 0,6.7,0 GLO
VEL: #C6G4 0,00 12.2,122,0 Sysl

PacE_9Y renmionausy BLANK PRECEDING PAGE BLANK NOT FILMED

98 Initialization of Dynamic Variables

To Give a Hingepoint an Initial Rotational Velocity about its Hinge
Axis Relative to the Gridpoint.

VELHINGE, VELHNG, VHINGE, VHNG, VELH
[VELHNG: hingepoint#, wh |

hingepoint# identifies the hingepoint to which the velocity will be applied
(#GjHk or #CiGjHKk).

wh rotational velocity of hingepoint about the hinge axis relative
to the gridpoint.

EXAMPLES

VELHNG: #G2HI, 3.6
VELHNG: #C6G4H2 3.14159

99

12. SETTING UP A TRANSIENT ANALYSIS

To perform a transient analysis it is necessary to provide a title for the data case and to se-
lect a number of options to control the analysis itself. These options include an explicit or
implicit integrator, integration timestep and timespan, inclusion of gyroscopic terms in the
equations of motion, and mass matrix updating options and constraint stabilization meth-
ods.

It is also possible to create moving frames of reference, and to specify periodic calculation
of instantaneous linearized frequencies and mode shapes.

LATDYN has two major forms of output, a print file and a plot file. The print file is in-
tended to be used primarily for debugging and verification of a model data case. The plot
file is intended for use with the LATDYN Postprocessor, an interactive program to plot
data from a LATDYN run, and to provide facilities for managing and comparing the output
data of several comparison runs. The Postprocessor also contains facilities for exporting
LATDYN output data to other programs, and for importing the output from other programs
for comparison with LATDYN output.

This section of the manual contains a description of commands to set up a LATDYN tran-
sient analysis. The four required commands are all in this section. They are
TITLE, INTEGRATOR, TIMESTEP, and TIMESPAN.

TITLES

There are two forms of title in LATDYN, a short form and a long form. The short form is
called TTTLE and the long form is called NOTES. The short form may not exceed 80 char-
acters in length and must be present on all data cases.

Both TITLE and NOTES data are different from comments which are written into the user
command file. A title defined with the TITLE command is passed from the command file to
LATDYN by the Preprocessor and subsequently to the Postprocessor by LATDYN. Thus
it is always present on all intermediate data files and may be used to identify that data or to
title plots. NOTES data is treated similarily except that it may not be used to title plots.

Defining a Title for a Data Case

The TITLE command is a required command and each data case may contain only one title.
The form of the command is:

TITLE

[TITLE: data case title |
data case title one line of up to 80 characters

100 Setting Up a Transient Analysis

EXAMPLES
TITLE: Space Crane Transient Analysis (Implicit Integrator)

Writing Notes on the Data Case

NOTES, NOTE, SUBTITLE, STITLE
[NOTES: data case notes |

data case notes list of any number of lines of up to 80 characters per line

EXAMPLES
NOTES: This is a preliminary run to compare motion over a short timespan
" with data generated from a rigid analysis. No pickup of a body is included.

ANALYSIS CONTROL COMMANDS

Integrator Type Selection
This command allows a user to control the type of algorithm which is to be used for time
integration:
INTEGRATION, INTEGR, INTEG
[INTEG: OPTION for integrator type, OPTION for automatic step adjustment]
OPTION for integrator type - EXPLICIT or IMPLICIT
EXPLICIT(alpha) to select explicit time integration

alpha alpha value for updating velocity (0 <= Alpha <= 1, default
IMPLICIT(alpha, beta, conv.criteria, epsrel, epsabs) - to select implicit integration
alpha alpha value for updating velocity (0 <= Alpha <= 1, default
=.5)
beta beta value for updating the displacement (only for transla-

tional degrees of freedom (0 <= Beta <= 5, default =.25)

conv. criteria - E, F, or A (E for energy tolerence, F for force tolerence, A
for acceleration tolerence) (default = A)

Integrator Type, TimeStep, Time Span 101

epsrel relative convergence criterion (real value >= 0, default =
.001). Note: if epsrel=0 then the relative convergence is not
used.

epsabs absolute convergence criterion (real value >= 0, de-

fault=.001). Note: if epsabs=0 then the absolute conver-
gence is not used.

Note: Both epsrel and epsabs may not be equal to zero.

Note: i solution changes a great del in magnitude during the integration
and you wish to see this change then a relative epsilon should be used.
If the solution does not change a great deal, or if you do not wish to see
this change then an absolute epsilon should be used. In general a mixed
criteria is probably the best and safest choice. For solutions large in
magnitude it is essentially relative arror, and for solutions small in mag-
nitude it is essentially absolute error.

OPTION for automatic step adjustment - AUTOSTEP
AUTOSTEP(OFF) automatic step adjustment off (default)
AUTOSTEP(ON) automatic step adjustment on

Notes on Time Integration:

o Explicit integration is only stable if the user specified timestep is small enough. This stability limit is gov-
erned by the highest natural frequency that the user has built into the model. That is, the maximum timestep
for which the integration will be stable is one-half of the period of the highest natural frequency in the model.
When the timestep exceeds this value a very rapid divergence occurs and within a few timesteps the pro-
gram aborts.

Because explicit integration usually requires a very small timestep for stability, the results of the integration
may be viewed with a high level of confidence.

olmplicit integration is stable over much larger timesteps than explicit integration, but the computer time
taken for each timestep is longer. Selection of the most computationally efficient algorithm will depend on
the details of the problem being solved.

Also, implicit integration tends to smooth rapid variations in the dynamic solution if too large a timestep is
specified. This question about solution accuracy with implicit integration may require convergence studies
to give the required leve! of confidence in a solution to a particular problem.

Integration Time Step

This is a required command which supplies the time integration step. It is a singular com-
mand of which multiple versions are allowed. A singular command in LATDYN means that
although multiple versions of the command may be specified in the user command file,
only one version of the command may be active at any time in the transient analysis. That
is, all but one version of the command must be qualified by a condition. Here the order of
the different versions of the commands in the input file is important. LATDYN chooses the
last one whose condition is .TRUE. to be the active version af the command.

TIMESTEP, TIMSTEP, TSTEP

ITIMESTEP: delt ? Cj |

delt time step increment
Cj refers to the user defined condition with label "j"

102 Setting Up a Transient Analysis

EXAMPLES

In the following example, all three statements appear together to specif the timestep for one run. If neither
C1 nor C2 are true then the timestep is .01. If C2 is true then the timestep is .0001. I C2 is false and C1 is
true then the timestep is .001.

TIMESTEP: .01
) 001 7C1
" 0001 7C2

Solution Time Span Specification

This is a required command which supplies the starting and terminating times of the tran-
sient response computations. Data takes the form,

TIMESPAN, TIMSPAN, TSPAN

[TIMESPAN: 11, t2 |
t] starting time for the transient response analysis

2 end time for transient response analysis

EXAMPLES

TIMESPAN: 0.0 3.0
TIMESPAN: 0.0 .2E-3

Mass Matrix Update Interval

This is an optional command used to designate updating of the system mass matrix. It is a
singular command of which multiple versions are allowed. A singular command in
LATDYN means that although multiple versions of the command may be specified in the
user command file, only one version of the command may be active at any time in the tran-
sient analysis. That is, all but one version of the command must be qualified by a condi-
tion. Here the order of the different versions of the commands in the input file is impor-
tant. LATDYN chooses the last one whose condition is .TRUE. to be the active version af
the command.

If no INCMASS command is given, then the mass matrix is updated at every timestep. For
the implicit case the mass matrix from the previous timestep is used, and no updates are
performed inside the iteration loop.

INCMASS, INCMAS, INC

[INCMASS:inc ? Cj |
inc this parameter has two possible meanings depending on
whether the integration is explicit or implicit,

Explicit Integration,
inc = number of timesteps between mass matrix updating
Implicit Integration,

Mass Matrix Update, Gyroscopic Terms, Constraint Stabilization 103

inc = number of first iterations within a timestep for which mass matrix
will be updated. (The mass matrix is always updated at every timestep.)

Lib41l

Cj refers to the user defined condition with label "
EXAMPLES

In the following example, all three statements appear together to specify the mass matrix update interval for
one run. If neither C1 nor C2 are true then the interval is 1. f C2 is true then the interval is 100. i C2 is false
and C1 is true then the interval is 10.

INCMASS: 1
" 10 7C1
" 100 7C2

Inclusion of Gyroscopic Terms in the Equations of Motion

This command enables the user to specify whether to include quadratic velocity dependent
gyroscopic terms in the equations of motion. Gyroscopic terms are especially important
when high rotational velocities are involved, but their effect is negligable for low rotational
velocities. The default is ON.

CHKGYR, CHECKGYRO, CHKGYRO
[CHKGYR: ON or OFF I

ON gyroscopic terms will be included
OFF gyroscopic terms will be omitted
EXAMPLES

CHKGYR: ON

To Control the Application of Baumgarte's Constraint Stabilization
Equation

Constraint stabilization is often useful to prevent the likelyhood of constraint violations
from taking place after integrating for a large number of timesteps. If the ABSTB command
is omitted then Baumgarte constraint stabilization will be off.

ABSTB

[ABSTB: OPTION to turn constraint stabilization on or off |
OPTION to turn constraint stabilization on or off - (alpha & beta) or OFF

(alpha & beta) turns constraint stabilization on (default is off)
alpha - value of alpha in Baumgarte's constraint equation
(alpha > 0, default value = 5)
beta - value of beta in Baumgarte's constraint equation (beta
must not be = 0, default value = 5)

OFF turns constraint stabilization off. No parameters.

104 Performing a Transient Analysis

EXAMPLES
ABSTB: 3 .35
ABSTB: OFF

SPECIAL FACILITIES TO BE USED DURING THE ANALYSIS

Creating a Moving Reference - Point, Vector, or Coordinate Axes
System

Fixed reference points, vectors, and coordinates axes are primarily useful during the setup

phase of model development. During a transient dynamic analysis involving large angular

rotations however, it is often necessary to use moving reference entities or frames of refer-
ence. Moving references can be set up by attaching a previously defined reference entity to
an actual physical part of the structure being modeled.

ATTACH

ATTACH: OPTION for reference entity to be attached, gridpoint# ? Cj |
OPTION for reference entity to be attached - AXES, REFPT, REFVECT

AXES(list of axesnames) - the coordinate systems named in the list will be fixed
to the specified gridpoint.

list of axesnames - identifiers of coordinate systems defined in the AXES
command

REFPT(list of reference points) - the reference points named in the list will be
fixed to the specified gridpoint.

list of reference points - identifiers of reference points (#Ri)

REFVECT(list of reference vectors) - the reference vectors named in the list will
be fixed to the specified gridpoint.

list of reference vectors - identifiers of reference vectors (RN)

gridpoint# gridpoint or jointpoint identifier(#G;j, #CiGj, #GjJk, or
#CiGjJk)
Cj optional condition label

NOTE: A moving reference entity - that is, a reference point, a reference vector, or a coordinate system -
may be attached to only one gridpoint or jointpoint at any time during the analysis. However, because it may
be desireable to change the point to which reference entities are attached, during the analysis, this com-
mand may be qualified by a condition (Cj) and multiple versions may be given by the user. Since only one
version of the command (with a particular reference entity list) may be active at a particular time it is in this
sense a "singular" command for each set of specified reference entities, but the first version of the com-
mand may have a condition label attached to it since it is also possible that if no version of the command is
active then the specified reference entities will simply not move. That is, they will be fixed in the global sys-
tem.

Moving Axes, Frequencies and Modes, Output 105

EXAMPLES

If a particular reference entity appears in a list of similar entities in one ATTACH command, then that entity
may not appear in any other ATTACH command unless it appears in an identical list of reference entities.
For example, the following commands are legal:

ATTACH: REFPT(#R1,#R2 #R3,#R4), #C"Sprocket"G1
" REFPT#R1#R2#R3#R4), #C"Slider"G4 ? C5

Here the reference points (#R1 through #R4) are attached to gridpoint 1 on the component "Sprocket™. They
will retain their same relative positions relative to this point throughout the analysis until condition 5 be-
comaes true, then their point of attachment will be switched to gridpoint 4 on component "Slider”, and will
henceforth retain their same relative positions to this point. However the following commands,

ATTACH: REFPT(#RI1#R2#R3#R4), #C"Sprocket"G1
" REFPT(#R1), #C"Slider"G4 ? C5

are not legal because referance point #R1 appears in different lists in two ATTACH commands. To be legal
these commands should be written in the form:

ATTACH: REFPT(#R2,#R3,#R4), #C"Sprocket"G1
$
ATTACH: REFPT®#R1), #C"Sprocket"G1

" REFPT(#R1), #C"Slider"G4 7 C5

To Specify the Calculation of Instantaneous Linearized
Frequencies and Modes

The FREQ command is used to specify the calculation of linearized modes and frequencies
of the system at particular times in the transient dynamic analysis. This command may be
qualified by a condition (Cj) and multiple versions may also be given by the user. However
only one version of the command may be active at a particular time and in this sense itis a
"singular" command, but the first version of the command may have a condition label at-
tached to it since it is also possible that no FREQ command may be active.

FREQUENCY, FREQ

[FREQ: OPTION for specifying calculation intervals, Hor L, m,n ? C]_]
OPTION for specifying calculation intervals - TIME or STEP
TIME(delta t) calculation specified at time intervals
deltat time interval '
STEP(delta k) calculation specified as a number of integration timesteps
delta k step interval
HorlL specifies whether the highest (H) or the lowest (L)

frequencies and modes are to be calculated.
specifies how many frequencies are to be calculated

n specifies how many modeshapes are to be calculated (must
be <=m)

Cj optional conditional label

106 Performing a Transient Analysis

EXAMPLES
FREQ: TIME(5) L 10 10
FREQ: STEP(1000) H 5 5

OUTPUT CONTROL COMMANDS

To Specity Periodic Printing of Results from the Transient Dynamic
Analysis

The print file is intended to be used primarily for debugging and checking details of a
model data case. The PRINT command which generates it is a "singular" command of
which multiple versions are allowed. That is, only one PRINT command may be active at
any time. Here the order of the different versions of the commands in the input file is im-
portant. When several conditional PRINT commands are given, then the one chosen is the
last one whose condition is TRUE. This logical structure enables a user to adjust printing
based on events which occur during the dynamic analysis.

PRINT,PRI

[PRINT: OPTION for specifying print intervals ? Cj]
OPTION for interval specification - STEP or TIME

STEP(k1, axesname, k2, LG, k3, k4, k5) - Specification for print period is given
in terms of a number of timesteps.
k1 an integer specifying the printing of dynamic states
(displacements, velocities, and accelerations of gridpoints
and jointpoints) every k1 timesteps. If k1 is zero or omitted
then no dynamic states are printed.

axesname identifies the user defined coordinate system with respect to
which components are to be printed. Note that the dynamic
states are NOT expressed relative to the motion of this coor-
dinate system.

k2 an integer specifying the printing of the internal forces at
each end of a flexible beam member every k2 timesteps. If
k2 is zero or omitted then no internal forces are printed.

LG is a letter (either L for local or G for global) specifying that
printing of internal member forces are to be in the local or
global systems. (The local system rotates with each mem-
ber.)

k3

k4

k5

Moving Axes, Frequencies and Modes, Output 107

is an integer specifying the printing of the massmatrix every
k3 timesteps. If k3 is zero or omitted then the mass matrix is
not printed.

is an integer specifying printing of the stiffness matrix every
k4 timesteps. If k4 is zero or omitted then the stiffness ma-
trix is not printed.

is an integer specifying printing of the gyroscopic matrix and
gyroscopic vector every k5 timesteps. If k3 is zero or omit-
ted then the gyroscopic matrix and vector are not printed.

TIME(t]l, axesname, t2, LG, 13, 14, t5) - Specification for print period is given in

G

EXAMPLES

t

axesname

2

LG

13

4

terms of a time interval.

an integer specifying the printing of dynamic states
(displacements, velocities, and accelerations of gridpoints
and jointpoints) every t1 seconds. If t1 is zero or omitted
then no dynamic states are printed.

identifies the user defined coordinate system with respect to
which components are to be printed. Note that the dynamic
states are NOT expressed relative to the motion of this coor-
dinate system.

an integer specifying the printing of the internal forces at
each end of a flexible beam member every t2 seconds. If t2
is zero or omitted then no internal forces are printed.

is a letter (either L for local or G for global) specifying that
printing of internal member forces are to be in the local or
global systems. (The local system rotates with each mem-
ber.)

is an integer specifying the printing of the massmatrix every
13 seconds. If t3 is zero or omitted then the mass matrix is
not printed.

is an integer specifying printing of the stiffness matrix every
t4 seconds. If t4 is zero or omitted then the stiffness matrix
is not printed.

is an integer specifying printing of the gyroscopic vector ev-
ery t5 seconds. If t5 is zero or omitted then the gyroscopic
vector is not printed.

is an optional reference to the j'th user defined condition.

When this parameter is present, then the command is made conditional.
That is, the command is active only when the condition is TRUE. Since
this is a singular command of which multiple versions are allowed, the
one chosan when multiple versions of the command are present is the
last one whose condition is TRUE. This logical structure enables a user
to adjust printing based on events which occur during the dynamic anal-
ysis.

PRINT: STEP(1000 GLO 1000 L)
PRINT: TIME(.1

GLO 1 G 1 1 1)

108 Performing a Transient Analysis

To Specify Periodic Output of Results from the Transient Dynamic
Analysis to a Postprocessor Plot File

The plot file is intended for use with the LATDYN Postprocessor, a interactive program to
plot data from a LATDYN run. The Postprocessor also provides facilities for managing and
comparing the output data of several LATDYN runs, and it contains facilities for exporting
LATDYN output data to other programs and for importing the output from other programs
to compare with LATDYN output.

The PLOT Command is a "singular" command of which multiple versions are allowed.
That is, only one PLOT command may be active at any time. When several conditional
PLOT commands are given, then the one chosen is the last one whose condition is TRUE.
This logical structure enables a user to adjust plotting based on events which occur during
the dynamic analysis.

PLOT

[PLOT: OPTION for specifying plot intervals ? Cj]

OPTION for specifying plot intervals - STEP or TIME

STEP(k1) Specification of plot period is given in terms of a number of
timesteps.

kl an integer specifying the plot file output of dynamic states
(displacements, velocities, and accelerations of gridpoints
and jointpoints) every k1 timesteps.

TIME(t]) Specification of plot period is given in terms of a time inter-
val
tl an integer specifying the plot file output of dynamic states

(displacements, velocities, and accelerations of gridpoints
and jointpoints) every tl seconds.

Cj is an optional reference to the j'th user defined condition.

When this parameter is present, then the command is made conditional.
That is, the command is active only when the condition is TRUE. Since
this is a singular command of which multiple versions are allowed, the
command chosen when multiple versions are present is the last one
whose condition is TRUE. This logical structure enables a user to adjust
plotting based on events which occur during the dynamic analysis.

EXAMPLES
PLOT: 10
"1 17C2

109

13. A SYMBOLIC LANGUAGE FOR TRANSIENT
ANALYSIS

There are many situations in control/structure dynamic analysis where some form of sym-
bolic language is needed to program the model. For example,using a symbolic language to
define mathematical operations is very convenient in modeling control systems for moving
robot arm, or where the structure is changing its configuration throughout the controlled
motion such as during the deployment sequence of a spacecraft component.

The alternative to a symbolic language is requiring the user to write subroutines. This pro-
cess can be difficult and error prone in the extreme. In LATDYN, a different approach has
been adopted. The Preprocessor writes the subroutines for you!

LATDYN providing symbolic capabilities for modeling control systems which are inte-
grated with the structural dynamic analysis itself. Its command language contains syntacti-
cal structures which perform symbolic operations and which are also interfaced directly
with the finite element structural model. Thus, when the dynamic equations representing
the structural model are integrated, user computations, perhaps representing the control
system, are integrated along with them as a coupled system.

SYMBOLIC PROGRAMMING CONCEPTS

LATDYN contains a special class of commands which allow a user to program conditions,
calculations, function evaluations, or more complex operations which are to be performed
during the transient analysis.These commands are SET, OP, and CL,;j.

Conditions are logical expressions written by the user in FORTRAN-like syntax. At any
time step, a condition may be true or false. In LATDYN, each user-defined condition must
be given a label by the user when it is defined using the "CLj" command. Many commands
in LATDYN may be made conditionally dependent on a specific user-defined condition by
attaching a question mark "?", followed by a condition label Cj to the end of the command.
If the logical statement associated with the condition label is true then the command be-
comes active. If the logical statement associated with the condition label is false, then the
command becomes inactive.

The basic commands to program calculations to be performed at each timestep are SET and
OP. The SET Command enables a user to program arithmetic calculations and function
evaluations which will be stored in user defined variables called Q-Variables. The OP
command enables a user to program more complex operations by calling LATDYN
"operators". For example, a "vector operator” may perform computations which result in a
vector. The resultant vector will be stored in a special user defined vector called a Q-
Vector.

110 A Symbolic Language for Transient Analysis

Since both Q-Variables and Q-Vectors may be used as parameters in a variety of com-
mands, this capability allows a user to program these commands with variables which de-
pend on the results of the transient analysis.

Creating User Subroutines

Because SET, OP, and CLj commands are a special class of commands which allow a user
freedom to program a transient analysis, it is necessary that a user be able to control the
order of the calculations specified in these commands in the context of LATDYN's time in-
tegrators.

The default order of these calculations is set so that they will be performed at the beginning
of a transient analysis, and at the end of each timestep thereafter. In addition, if a user is
performing the analysis using an implicit integrator, then the calculations will also be per-
formed within the implicit iteration loop.

The PROGRAM command tells the LATDYN Preprocessor in which subroutines to place
the user's programmed calculations. In this way an advanced user may override the de-
faults described above. All SET, OP, and CL;j commands following this command will be
placed in the named user subroutines in the same order in which they appear in the user's
command file. A subsequent PROGRAM command cancels all settings from a previous
PROGRAM command.

PROGRAM, PROG, PRO

[PROGRAM: subroutine name, subroutine name, ... |
subroutine name PRECALC, BGNSTEP, ENDSTEP, INLOOP or ALL, or
NONE

Each subroutine name has a specific meaning in a LATDYN transient
analysis sequence as shown in figures 13.1 and 13.2.

PRECALC subroutine to initialize variables. All user program statements
following this command will be evaluated before the start of
time integration.

BGNSTEP subroutine to perform user operations, and evaluate user Q-
variables and conditions at the start of a timestep.

ENDSTEP subroutine to perform user operations, and evaluate user Q-
variables and conditions at the end of a timestep.

INLOOP subroutine to perform user operations, and evaluate user Q-

variables and conditions at the end of an implicit iteration
loop within the timestep integration.

ALL all of the above
NONE none of the above
EXAMPLES

PROGRAM: PRECALC
PROGRAM: PRECALC BGNSTEP INLOOP
PROGRAM: ENDSTEP

A Symbolic Language for Transient Analysis 111

initial conditions

execute user subroutine; PRECALC (users SET, OP, and CLj commands)
setup initial active versions of conditionally dependent commands

"autocalc” table evaluation
L

compute acceleration {a 0} attime=0, by assembling mass matrix [M 4]
and force vector {f jand solving [M ¢ {ao} ={fp}

=t=t+81 I

predict displacement d, velocity v, and transformation
matrices T; from solution at previous timestep

1
execute user subroutine: BGNSTEP
(users SET, OP, and CLj commands) Y

1

"autgcalc” table evaluation
I

compute acceleration {a,} at time=t, by
reassembling mass matrix [M] and force vector {{}
and solving [M,]{a } ={f,}
1
correct velocity v, using current value of a,

1
execute user subroutine: ENDSTEP (
(users SET, OP, and CLj commands)
1

invoke "condition change processor” to cancel, activate, or set-up
new versions of commands which are subject to user defined
conditions that have changed during the current timestep

1

print and plot data output

yes

end

Figure 13.1 Flow Chart for Explicit Integrator

112 A Symbolic Language for Transient Analysis

initial conditions

execute user subroutine: PRECALC (users SET, OP, and CLj commands)
A
setup initial active versions of conditionally dependent commands

"autocalc” table evaluation
) &

compute accsleration {a 0} attime=0, by assembling mass matrix (M ¢]
and force vector {f and solving [M g {a 0} ={fo}

=t=t+8t I

predict displacement d, velocity v, and transformation
A matrices Ty from solution at previous timestep

execute user subroutine: BGNSTEP
(users SET, OP, and CLj commands)

execute user subroutine: INLOOP
{(users SET, OP, and CLj commands)

A "autgcalc” table evaluation
)

update acceleration {a ¢} at timest, by reassembling mass matrix [M],
composite force vector {f { }, stitfness matrix [K ,], gyroscopic atrix [G ¢],
and solving [M + 2 K t+°2Gt]{at} ={fy }

update velocity v and displacement d y using current value of a;

=<

yes

execute user subrgutine: ENDSTEP (
{users SET, OP, and CLj commands)

invoke "condition change processor” to cancel, activate, or set-up new versions of commands
which are subject to user defined conditions that have changed during the current timestep

1
print and plot data output

yes

end

Figure 13.2 Flow Chart for Implicit Integrator

A Symbolic Language for Transient Analysis 113

Defining a Condition

CLi Cj

[CLj: FORTRAN Logical Expression]

FORTRAN Logical Expression - any valid FORTRAN logical expression which may in-
clude references to LATDYN internal functions and/or other
condition labels.

EXAMPLES
CL1: X(D,3) .GT. 1.6
CL2: ABS(X(V,3)) .LT. 1.E-3 .AND. CLI1

C4: (Q14+Q16) .LT. Q20
CL5: .NOT.CL1 .OR. Q5.GT.0.0

Creating Q-Variables

The SET command enables a user to define a Q-variable. Q-variables are true program vari-
ables which are computed during a LATDYN run in special user subroutines which are
called from the LATDYN computational core. The PROGRAM command determines
which subroutines in which to insert the specified computations.

SET

[SET: Qn= FORTRAN arithmetic expression ? Cj B
n the Q-Variable ID, that is, an integer between 1 and 9

FORTRAN arithmetic expression - any valid FORTRAN arithmetic expression which
may include references to LATDYN internal functions

Cj j'th optional condition label. If this parameter is present then
the Q-Variable is SET whenever the command is executed
provided that Cj is TRUE.

EXAMPLES

SET: Q2 =MAG(V #G6) + MAG(V,#G8)
SET: Q27 = YAW(V #G4)

SET: Q5=H(A#G7H1) ?Cl1

SET: Q9 = SIN(PI * SPIN(D,#G3)/180)

Using Operators in LATDYN

LATDYN includes a large number of symbolic operators for performing a variety of opera-
tions. For example, symbolic operators may be used to make Q-vectors from gridpoint

114 A Symbolic Language for Transient Analysis

motion quantities or to perform vector algebra. The basic form of the command to invoke
any LATDYN operator is as follows:

OP, OPERATOR, OPER

[OP:_symbolic name {list of parameters) ? Cj |

symbolic name operator name from LATDYN operator library (must con-
form to the rules for FORTRAN subroutine names for user
written operators)

(list of parameters) parameters as specified for this operator (must be enclosed in
parentheses and parameters must be separated by commas,
as to conform with the rules for an argument list in a
FORTRAN subroutine CALL statement).

Cj J'th optional condition label. If this parameter is present then
the operation is performed whenever the command is exe-
cuted provided that Cj is TRUE.

EXAMPLES

OP: MKQVI(V, #G3, QM) $ make a Q-vector from the velocity of #G3

OP: VXV(R76, Q75, Q*8) 7 C3 $ take the cross product of RA6 with Q7S to give Q8

OP: MKQV3(V, #C'spinner'G2H1, Q*44) $ make Q*44 from the rot,vel. of hinge 1,
at #C'spinner'G2

LIST OF CONSTANTS FOR USE IN Q-VARIABLES AND
CONDITIONS

The following parameters may be used in Q-variables and conditions,

PI 3.141592654

PI2 2*PI

PIH P12

T integration time

DT current integration step size

List of Functions and Operators 115

LIST OF FUNCTIONS FOR USE IN Q-VARIABLES AND
CONDITIONS

ABVD(vectora ID, vectorb ID) ' FUNCTIONS to calculate the angle be-
tween two vectors in degrees (ABVD)
ABVR(vectora ID, vectorb ID) or radians (ABVR).

vector a ID - RAf or TAL or QA or [*axesname or JAaxesname or Kaxesname
vector b ID - RAi or TAi or Q4 or [*axesname or JAaxesname or KAaxesname

IACCM (member#, y, z, hy, hz, xn) I FUNCTION to calculate the accelera-
tion at a point on a flexible beam mem-

ber. Returns value that would be mea-
sured by an accelerometer attached to

the member.

member# member or element identifier (#Mj, #MjEk, #CiMj, or #CiMjEk)

y, Z components giving the orientation of the accelerometer relative to the
principal y- and z-axes.

hy, hz distances from the neutral axis in the principal x-y and x-z planes of the
member.

Xn normalized distance along the member or element (=0 at start grid#, =1 at
end grid#)

ANGLEX (p, grid#) FUNCTIONS to calculate the angles
: which the motion vector makes with the

ﬁsgtgz ((8" g;:gz)) global X, Y, Z coordinate axes.

P motion parameter (D - displacement, V - velocity, A - acceleration)

grid# gridpoint identifier (#Gj o#CiGj)

ANGLEWX (p', grid#) FUNCTIONS to calculate the angles
ANGLEWY (p.’ gri d#) thIiCh theI gridpoint L?tatlonail(veki)‘cr:tyh
ANGLEWZ (p', grid#) SobaX. Y. Z coordinate axes,
p' motion parameter (V - velocity, A - acceleration)

grid# gridpoint identifier (#Gj or#CiGj)
[DIST (grida#, gridb#)] FUNCTION to calculate the distance

between two gridpoints.

grid#a, gridb# gridpoint identifier (#Gj or#CiGj or #Ri)

116 List of Function s and Operators

[DOT (Vector a ID, Vector b ID) ~] [FUNCTION to calculate the Dot
scalar) product of two vectors

Vector a ID RA or T?i or QM or I*axesname or JAaxesname or KAaxesname
Vector b ID RAi or TA or QA or IAaxesname or JAaxesname or K*axesname

{H (p, hingepoint#)] FUNCTION to calculate the rotational

displacement, velocity, and accelera-

tion of a hingepoint relative to its grid-
oint.

P motion parameter (D - displacement, V - velocity, A - acceleration)
hingepoint# himgepoint identifier (#GjHk or#CiGjHk or#Ri)

i FUNCTION to calculate the magnitude
LMAG (P. Qﬂj#) I of gridpoint motion vector in gk?bal sys-
tem
p motion parameter (D - displacement, V - velocity, A - acceleration)
grid# gridpoint identifier (#Gj or#CiG;j or#Ri)
[MAGV (Vector ID)] FUNCTION for Finding the Length of a
Vector

Vector ID Q7k, RAk, or TAk

Vector With Respect to the
Translational Motion of a User Defined
Coordinate System

[MAGVL (Vector ID, p, AXES, "axesname”) | [FUNCTION for Finding the Length of a

Vector ID Identifier of vector whose length is to be found (Q/k, R*k, or TAk)

P Motion Quantity of the coordinate system with respect to which the length
of the vector is being calculated. D-displacement, V-velocity, A-accelera-
tion

AXES the word AXES

"axesname" identifier of user defined coord. system (must be enclosed in quotes)

ISEP (p, grida#, gridb#)] FUNCTION to calculate the separation

motion between two gridpoints.

Returns the component of relative mo-

tion along the line joining the grid-
oints.

p motion parameter (D - relative displacement, V - relative velocity, A -

relative acceleration)
grid#a, gridb# gridpoint identifier (#Gj or#CiGj or #Ri)

List of Functions and Operators 117

[STRAIN (member#, hy, hz, xn)

FUNCTION to calculate the strain in a
flexible beam member. Returns value
that would be measured by a strain
gauge placed parallel to x-axis of
member.

member# member or element identifier (#Mj, #MjEk, #CiMj, or #CiMjEk)

hy, hz distances from the neutral axis in the principal x-y and x-z planes of the
member.

Xn normalized distance along the member or element (=0 at start grid#, =1 at
end grid#)

YAW (p, grid#)
PITCH (p, grid#)
ROLL (p, grid#)

FUNCTIONS to calculate gridpoint
Euler angles and their velocities and
accelerations.

P motion parameter (D - displacement, V - velocity, A - acceleration)
grid# gridpoint identifier (#Gj or#CiGj or#Ri)

WX (p', grid#) FUNCTIONS to calculate components
WY (p. grid#) of gridpoint rotational velocity and ac-
W2 (P', gri a#) celeration vectors.

P motion parameter (V - velocity, A - acceleration)

grid# gridpoint identifier (#Gj or#CiGj or #Ri)

[WMAG (p', grid#)

FUNCTION to caiculate the magnitude
of gridpoint rotational velocity and ac-

celeration vectors in global system

p motion parameter (V - velocity, A - acceleration)

grid# gridpoint identifier (#Gj or#CiGj or#R1i)

X (p, grid#) FUNCTIONS to calculate the compo-
Y (p’ gri d#) ?ents of grid point motion in global sys-
Z (p, gric#) -

P motion parameter (D - displacement, V - velocity, A - acceleration)

grid# gridpoint identifier (#Gj or#CiG;j or #Ri)

XLOC (grid#)
YLOC (grid#)
ZLOC (grid#)

FUNCTIONS to calculate the location

of a gridpoint in global system

gnd# gridpoint identifier (#Gj or#CiGj or#Ri)

118 List of Function s and Operators

XV(vector ID)
YV(vector ID)
ZV(vector ID)

FUNCTIONS to compute the X,Y, or Z
components of a vector in the global
system.

vector ID identifier of the vector whose components are to be found (Q*k, R”k, or
TAK)
XVL(vector ID, AXES, "axesname") FUNCTIONS o compute the X. ¥, or Z
YVL(vector ID, AXES, "axesname”) Cormponan's o a vecrorina ser
’ ’ Defined Local Coordinate System
ZVL(vector ID, AXES, "axesname") L

NOTE: Function is not presently implemented.

vector ID identifier of the vector whose components are to be found (Q*k, RAk, or
TAk)

AXES the word AXES

“axesname" identifier of user defined coordinate system with respect to which the
components are to be evaluated (must be enclosed in quotes). Note: for
evaluating components, the coordinate system is assumed to be instanta-
neously stationary.

XVWL(vector ID, p, AXES, "axesname") FUNCTIOI;JS t;: c%m&ute. the ﬁ Y,orZ

YVWL(vector ID, p, AXES, "axesname") components ol a veclor in a user

r - " Defined Local Coordinate System with

ZVWL (vector ID, p, AXES, "axesname”) Respect to the Motion of that System.

NOTE: Function is not presently implemented.

vector ID identifier of the vector whose components are to be found (Q”k, Rk, or
TAk)

p Motion Quantity of the coordinate system with respect to which the length
of the vector is being calculated. D-displacement, V-velocity, A-accelera-
tion

AXES the word AXES

"axesname" identifier of user defined coordinate system with respect to which the com-

ponents are to be evaluated (must be enclosed in quotes).

LIST OF OPERATORS FOR MAKING Q-VECTORS

[MKQVT (p, grid #, Q"k) | OPERATOR for making a Q-vector

P

from a gridpoint translation quantity
motion parameter (D - displacement, V - velocity, A - acceleration)

List of Functions and Operators 119

grid# gridpoint identifier (#Gj or#CiGj or#Ri)
Q*k identifier of Q-vector to be made
IMKQV2 (p, grid #, (-)Ak) J OPERATOR for making a Q-Vector
from a Grid Point Rotation Quantity
p rotational motion parameter (D - displacement, V - velocity, A - accelera-
tion)
grid# gridpoint identifier (#Gj or#CiGj or #R1i)
Qk identifier of Q-vector to be made
[MKQV3 (p, hingepoint#, Qk) | [OPERATOR for making a Q-Vector
from Motion of a Hinge
P rotational motion parameter (D - displacement, V - velocity, A - accelera-
tion)
grid# gridpoint identifier (#Gj or#CiGj or#Ri)
Qk identifier of Q-vector to be made

Note: The vector Q*k which is created by the MKQV3 operator always points in the direction of the hinge
axis. The length of the vector is equal to the magnitude of the motion quantity about that axis relative to the
grid point to which it is attached.

[MKQV4 (p, grid #, 'axesname’, Q*k) | OPERATOR for making a Q-Vector _
from the Relative Translation of a Grid
Point in a User Defined Coordinate

System
P motion parameter (D - displacement, V - velocity, A - acceleration)
grid# gridpoint identifier (#Gj or#CiGj or#Ri)
Qk identifier of Q-vector to be made
IMKQVS5 (p, grid #, axesname, C-)Ak) | OPERATOR for making a Q-Vector
——— from the Relative Rotation of a Grid
Point in a User Defined Coordinate
System
P rotational motion parameter (D - displacement, V - velocity, A - accelera-
tion)
grid# gridpoint identifier (#Gj or#CiGj or#Ri)
Q*k identifier of Q-vector to be made

MKQVS (Vector I.D. for Direction, Magnitude, OPERATOR for making a Q-Vector
QAk) With the Direction of Another Vector

but with a Different Magnitude

Vector LD. for Direction - gives the direction of the Q-Vector to be made.(RM, TA1, QA
IMaxesname, JAaxesname, KAaxesname)

Magnitude Gives the magnitude of the Q-Vector to be made. May be a real number
or a Q-variable.

120 List of Function s and Operators

Q*k gives the L.D. of the Q-Vector to be made.
[MKQV7 (Cx, Cy, Cz, Q%K) | [OPERATOR for making a Q-Vector by

Specifying its Components in the
Global System

Cx, Cy, Cz Components of the Q-Vector to be made, expressed in the global system
(may be real numbers or Q-Variables)

Qk identifier of the Q-vector to be made.
[MKGVB (Vector I.D., Q/\k) I OPERATOR for Setting a Q-Vector
- Equal to Another Vector.
Vector I.D. identifies the vector that the Q-vector is to be set equal to (RA, TAL, QA
IMaxesname, JAaxesname, KAaxesname).
Qk identifier of the Q-vector to be made.
[MKQV9 (p, AXES, "axesname"”, Q*k)] OPERATOR for making a Q-Vector to

give the Translational Motion of the
Origin of a User Defined Coordinate
System

P motion parameter (D - displacement, V - velocity, A - acceleration)
AXES the word AXES

"axesname" refers to the name of the coordinate system (must be enclosed in quotes)
Q*k the vector to be made giving the translational motion of the origin.
[MKQV10 (p, AXES, "axesname”, Q*k) | OPERATOR for making a Q-Vector to

give the Rotational Motion of the Origin
of a User Defined Coordinate System

P rotational motion parameter (D - displacement, V - velocity, A - accelera-
tion)

AXES the word AXES

"axesname” refers to the name of the coordinate system (must be enclosed in quotes)

Q*k the vector to be made giving the rotational motion of the origin.

LIST OF OPERATORS FOR VECTOR ALGEBRA

[VPV (Vectora ID, Vectorb ID, Q*K) [OPERATOR: Vector Plus Vector

VectoraID RA1 or TAi or QA1 or [*axesname or JAaxesname or KAaxesname
VectorbID RAi or TAL or QA or TMaxesname or JAaxesname or KAaxesname
Q*k Vector a + Vector b

List of Functions and Operators

121

[VMV (Vectora ID, Vectorb ID, Q*k) | [OPERATOR: Vector Minus Vector |
VectoraID RA1 or TA or QA or I*axesname or JAaxesname or KAaxesname
Vectorb ID RAi or TAI or QA or I*axesname or JAaxesname or K*axesname
Q*k Vector a - Vector b
[VxV (Vectora ID, Vectorb 1D, Q"k) | [OPERATOR: Vector Times Vector
(cross product)
Vectora ID RAi or TAi or Q7 or [*axesname or JAaxesname or KAaxesname
Vector b ID RAi or TAi or Q7 or [Maxesname or JAaxesname or K*axesname
Q*k Vectora x Vectorb
[CXV (constant, vectora ID, Q*k)] [OPERATOR: Constant Times a Vedtor |
Constant real number or Q-Variable
VectoraID RA or TA1 or QA or I*axesname or JAaxesname or K*axesname

QX the product of C times vectora

123

ALPABETICAL LISTING OF COMMANDS

ABSTB
ADMASS
APPFORCE
APPTORQUE
ATTACH
AXES
BALLJOINT

BALLPT

BEAMPROP
CHKGYR
CLAMP

CLj
COMPONENT
CYLJOINT
DEFAULT
DEFINE
DISTLINK
ECHO

END
FATALS

PAGE_| XD~ INTENTIONALLY BLANK

page
Apply Baumgarte Constraint Stabilization 103
Add a Mass to a Gridpoint or Jointpoint 63

Define a Force and Apply it to a Gridpoint or Set of Gridpoints 91
Define a Torque and Apply it to a Gridpoint or Set of Gridpoints 92

To Create a Moving Coordinate Frame of Reference 104
Creating a New Coordinate System 38
Link Two Gridpoints by a Ball Joint Constraint (Impose 3

Constraint Equations) 72
Attaching a Ball Jointpoint to a Gridpoint (Add 3 Degrees of

Freedom) 57
Define the Properties of a Beam Cross-Section 50
Inclusion of Gyroscopic Terms in the Equations of Motion 103
Clamp Two Gridpoints Together Rigidly 76
To Define a Condition Label 113
Declaring the existence of a new component 43
Define a Cylindrical Joint Linking Two Gridpoints 73
Set Default Component, Axes, Gridpoint, or Jointpoint 45
String Replacement Commarnd for Preprocessor 44
Define a Massless Link Between Two Gridpoints 76
Allows Specification of Output File for Commands After They

Are Processed by Preprocessor 34
End of Data Flag for Preprocessor ' 33

Allows Specification of Qutput File for Fatal Error Messages
from the Preprocessor 34

Fix a Gridpoint at its Present Location and Orientation in Space 75

PRECEDING PAGE BLANK NOT FILMED

124 Alphabetical Listing of Commands

FMEMBER

FREQ

GRIDPT
GRIDSTR

GRIDSTRE

GRIDSTRF

GRAVITY
HINGEJOINT

HINGEPT

INCMASS
INTEG
LINACTUATOR
LINDAMPER

LINSPRING

MASSPROP
MATPROP
MDFC
NODEFAULT
NOTES

OP

PLOT

PRINT

Define a Flexible Beam Member Consisting of One Beam Element or a

String of Beam Elements 58
To Specify the Calculation of Instantaneous Linearized Frequencies

and Modes 105
Define a Single Gridpoint 51
Define a String of Equally Spaced Gridpoints Between Two

Coordinate Locations 52
Extend a String of Equally Spaced Gridpoints Out from a Point

Which Has Already Been Defined 54
Fill in a String of Equally Spaced Gridpoints Between Two Points
Which Have Already Been Defined 53
Specify a Gravity Field 95
Link Two Gridpoints by a Revolute (Hinge) Joint Constraint

(Impose 5 Constraint Equations) 70
Attaching a Hinged Jointpoint to a Gridpoint (Add 1 Degree of
Freedom) 56
Mass Matrix Update Interval 102
Integrator Type Selection 100
Define a Lineal Actuator 93
Define an Extensional (Lineal) Damper Acting in a Line Between

Two Gridpoints 68
Define an Extensional (Lineal) Spring Acting in a Line Between Two
Gridpoints 67
Define The Properties of a Lumped Mass 50
Define a Material Property 49
Define a Multi Degree of Freedom Constraint 78
Clear Default Component, Axes, Gridpoint, or Jointpoint 47
Writing Notes on the Data Case 100
To Call a LATDYN Operator 114
Plot File Control Command 108
Print Control Command 106

Alphabetical Listing of Commands 125

PROGRAM To Specify the Destination Subroutines for User Program

Commands 110
RBODY Define a Rigid Body 62
RBTREE Define a Recursion Path for a Jointed Tree of Rigid Bodies and/or

Rigid Beam Members 63
READ Directive for the Preprocessor to Read a File of User Command

Data 33
REFPT Define a Reference Point 41
REFVECT Define a Reference Vector 42
RMEMBER Define a Rigid Beam Member 60
ROTACTUACTOR Define a Rotational Actuator 94
ROTDAMPER Define a Rotational Damper 66
ROTNLJ Define a Rotational Non-Linear Joint 66
ROTSPRING Define a Rotational Spring 65
SET To Define a Q-Variable (User Defined Variable) 113
SDFC Define a Single Degree of Freedom Constraint 77
SHOWDEFAULT - Show Default Component, Axes, Gridpoint, or Jointpoint 48
TABLE1 Define a Data Table Which is a Function of a Single Independent

Variable 83
TABLE2 Define a Data Table Which is a Function of a Two Independent

Variables 85
TABLEVECT1 Define a Vector Table Which is a Function of a Single Independent

Variable 88
TCALC1 Interpolate and Differentiate a Data Table Which is a Function of

One Independent Variable 87
TCALC2 Interpolate and Differentiate a Data Table Which is a Function of

Two Independent Variables 87
TITLE To Define a Title for a Data Case 99
TIMESTEP Integration Time Step 101
TIMESPAN Integration Time Span 102

126 Alphabetical Listing of Commands

TRANSJOINT
TVCALC1

UNIJOINT

UNIPT

USEULER
VEL
VELHNG

WARNINGS

Define a Translational Joint Linking Two Gridpoints

Interpolate and Differentiate a Vector Table Which is a Function of
One Independent Variable

Link Two Gridpoints by a Universal Joint Constraint (Impose 4
Constraint Equations)

Attaching a Universal Jointpoint to a Gridpoint (Add 2 Degrees of
Freedom)

Creating a User Defined Euler Angle System
To Give a Single Gridpoint an Initial Velocity

To Give a Hingepoint an Initial Rotational Velocity about its Hinge
Axis Relative to the Gridpoint

Allows Specification of Output File for Warning Messages from
the Preprocessor

74

90

71

57
40
97

98

34

NASA Report Documentation Page

Nalonal AOrauics and
Seace Aomnigliation

1. Report No. 2. Government Accession No.

NASA CR-4401

3. Recipient’s Catalog No.

4. Title and Subtitle

Large Angle Transient Dynamics (LATDYN)

5. Report Date
October 1991

User's Manual

6. Performing Organization Code

7. Author(s)

A. Louis Abrahamson, Che-Wei Chang, Michael G. Powell,

8. Performing Organization Report No.

LaRC/LUM 1.0

Shih-Chin Wu, Bradford D. Bingel, and Paula M. Theophilos

9. Performing Organization Name and Address

10. Work Unit No.

505-63-53

COMTEK
702 East Woodland Road

11. Contract or Grant No.

NAST-18478

Grafton, Virginia 23692

12. Sponsoring Agency Name and Address

NASA Langley Research Center

13. Type of Report and Period Covered

Contractor Report (Final)

Hampton, Virginia 23665

14. Sponsoring Agency Code

15. Supplementary Notes
Langley Technical Monitor: Jerrold M. Housner

COMTEK, Grafton, Virginia.

Hampton, Virginia.

A. Louis Abrahamson, Che-Wei Chang, Michael G. Powell, and Shih-Chin Wu:

Bradford D. Bingel and Paula M. Theophilos: Computer Sciences Corporation,

16. Abstract

deformation and control/structure interaction problems associated with

spacecraft .

and/or rigid body assumptions.

"LATDYN" is a computer code for modeling the Large Angle Transient DYNamics of structures.
The objective in developing the code was to investigate new techniques for analysing flexible

spacecraft. Such motions may consist of pointing the entire spacecraft or articulation of individual
components, events which occur frequently during construction, operation, and maintaince of large

This type of analysis is beyond the routine capability of conventional analytical tools without
simplifying assumptions. In some instances the motion may be sufficiently slow and the spacecraft (or
component) sufficiently rigid to simplify analyses of dynamics and controls by making psuedo-static

LATDYN introduces a new approach to the problem by combining finite element structural analysis,
multi-body dynamics, and control system analysis,.in a single tool. It includes a new type of finite
element that can deform and rotate through large angles at the same time, and which can be connected to
other finite elements either rigidly or through mechanical joints. LATDYN also provides symbolic
capabilities for modeling control systems which are interfaced directly with the finite element structural
model. Thus, the non-linear equations representing the structural model are integrated along with the
equations representing sensors, processing and controls as a coupled system.

large angular motions of

L arge Angle Transient Dynamics

Flexible Multi-Body Dynamics

17. Key Words {Suggested by Author{s)} 18. Distribution Statement

Control - Structure Interaction Unclassified - Unlimited

Subject Category 39

19. Security Classif. (of this report} 20. Security Classif. (of this page}
Unclassified Unclassified

21. No. of pages 22. Price
136 AQ7

NASA FORM 1626 OCT 86

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171 NASA-Langley, 1991

